Respuesta :

Answer:

[tex]x=1[/tex]

[tex]x=-1[/tex]

Step-by-step explanation:

 Let's use the quadratic formula to solve this.

  Quadratic formula is usually defined as the formula for determining the   roots of a quadratic equation from its coefficient. Quadratic equations are  equations containing a single variable of degree 2. Its general form is ax^2   + bx + c = 0, where x is the variable, and a,b, and c are constants (a ≠ 0).

_______

steps

     1 ) move terms to the left side

                                [tex]x^2=1[/tex]

                            [tex]x^2-1=0[/tex]

        2) Use the quadratic formula

[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

       Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

     [tex]x^2-1=0[/tex]

        [tex]a =1 \\b = 0\\c=-1[/tex]

      [tex]x=\frac{-0\pm\sqrt{0^2-4*1(-1)} }{2*1}[/tex]

    3) Simplify

           

 - evaluate the exponent

[tex]x=\frac{0\pm\sqrt{0^2-4*1(-1)} }{2*1}[/tex]

[tex]x=\frac{0\pm\sqrt{0-4*1(-1)} }{2*1}[/tex]

 -   Multiply the numbers

 [tex]x=\frac{0\pm\sqrt{0-4*1(-1)} }{2*1}\\[/tex]

[tex]x=\frac{0\pm\sqrt{0+4} }{2*1}[/tex]

- add the numbers

     [tex]x=\frac{0\pm\sqrt{0+4} }{2*1}[/tex]

    [tex]x=\frac{0\pm\sqrt{4} }{2*1}[/tex]

-  Evaluate the square root

 [tex]x=\frac{0\pm\sqrt{4} }{2*1}[/tex]

[tex]x=\frac{0\pm2}{2*1}[/tex]

- add zero

 [tex]x=\frac{0\pm2}{2*1}[/tex]

  [tex]x=\frac{\pm2}{2*1}[/tex]

-  Multiply the numbers

 [tex]x=\frac{\pm2}{2*1}[/tex]

 [tex]x=\frac{\pm2}{2}[/tex]

   4) separate the equations

     

  -  To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

                  [tex]x=\frac{2}{2}\\x=\frac{-2}{2}[/tex]

          5) solve

 - Rearrange and isolate the variable to find each solution

    [tex]x=1\\x=-1[/tex]        

___________


solution

[tex]x=1\\x=-1[/tex]