Respuesta :
Answer:
[tex]x=1[/tex]
[tex]x=-1[/tex]
Step-by-step explanation:
Let's use the quadratic formula to solve this.
Quadratic formula is usually defined as the formula for determining the roots of a quadratic equation from its coefficient. Quadratic equations are equations containing a single variable of degree 2. Its general form is ax^2 + bx + c = 0, where x is the variable, and a,b, and c are constants (a ≠ 0).
_______
steps
1 ) move terms to the left side
[tex]x^2=1[/tex]
[tex]x^2-1=0[/tex]
2) Use the quadratic formula
[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
[tex]x^2-1=0[/tex]
[tex]a =1 \\b = 0\\c=-1[/tex]
[tex]x=\frac{-0\pm\sqrt{0^2-4*1(-1)} }{2*1}[/tex]
3) Simplify
- evaluate the exponent
[tex]x=\frac{0\pm\sqrt{0^2-4*1(-1)} }{2*1}[/tex]
[tex]x=\frac{0\pm\sqrt{0-4*1(-1)} }{2*1}[/tex]
- Multiply the numbers
[tex]x=\frac{0\pm\sqrt{0-4*1(-1)} }{2*1}\\[/tex]
[tex]x=\frac{0\pm\sqrt{0+4} }{2*1}[/tex]
- add the numbers
[tex]x=\frac{0\pm\sqrt{0+4} }{2*1}[/tex]
[tex]x=\frac{0\pm\sqrt{4} }{2*1}[/tex]
- Evaluate the square root
[tex]x=\frac{0\pm\sqrt{4} }{2*1}[/tex]
[tex]x=\frac{0\pm2}{2*1}[/tex]
- add zero
[tex]x=\frac{0\pm2}{2*1}[/tex]
[tex]x=\frac{\pm2}{2*1}[/tex]
- Multiply the numbers
[tex]x=\frac{\pm2}{2*1}[/tex]
[tex]x=\frac{\pm2}{2}[/tex]
4) separate the equations
- To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.
[tex]x=\frac{2}{2}\\x=\frac{-2}{2}[/tex]
5) solve
- Rearrange and isolate the variable to find each solution
[tex]x=1\\x=-1[/tex]
___________
solution
[tex]x=1\\x=-1[/tex]