Respuesta :
Answer:
1/2
Step-by-step explanation:
Find the domain of the inequality: [tex]\left \{ {{b > 0} \atop {b\neq 1}} \right.[/tex]
Solve the inequality: b > 0
Convert inequality to equation: b = 1
Solve the equation: b = 1
Convert equation to inequality: b ≠ 1
Find the intersection: 0 < b < 1 or b > 1
The domain of the inequality is: [tex]\text{log}_b3=\frac{1}{4} ,0 < b, < b < 1[/tex] or[tex]b > 1[/tex]
Convert logarithm to exponential form: [tex]b^{\frac{1}{4} }[/tex] = 3, 0 <b<b1 or b > 1
Power on both sides: (b^1/4)^4=3^4, 0<b<1 or b > 1
Simplify using exponent rule (a^n)^m = a^nm:
b = 3^4, 0<b<1 or b > 1
Calculate the power:
b = 81 , 0<b<1 or b > 1
Find the intersection: b = 81
Substitute: [tex]\text{log}_{81}9[/tex]
Factorize the argument: [tex]\text{log}_{81} 3^2[/tex]
Express the logarithm of a power of an expression as the power times the logarithm of the expression: [tex]2*\text{log}_{81} 3[/tex]
Factorize the base: [tex]2*\text{log}x_{3^4} 3[/tex]
Rewrite the expression using the formula: [tex]\text{log}_{a^n} b[/tex]
to [tex](\frac{1}{n} ) \text{log}_ab:[/tex] [tex]2*\frac{1}{4} *\text{log}_33[/tex]
Apply the power law of logarithm to simplify the expression:
[tex]2*\frac{1}{4}[/tex]
Reduce the expression to the lowest form:
[tex]\frac{1}{2}[/tex]
Answer: 1/2
Answer:
[tex]\log_b9=\dfrac{1}{2}[/tex]
Step-by-step explanation:
[tex]\textsf{Given}: \quad\log_b3=\dfrac{1}{4}[/tex]
[tex]\textsf{To find }\log_b9, \textsf{ rewrite 9 as 3}^2:[/tex]
[tex]\implies \log_b9=\log_b3^2[/tex]
[tex]\textsf{Apply the Power log law}: \quad \log_ax^n=n\log_ax[/tex]
[tex]\implies \log_b3^2= 2\log_b3[/tex]
[tex]\begin{aligned}\textsf{If }\log_b3& =\dfrac{1}{4}\\\\ \implies 2 \log_b3 & =2 \times \dfrac{1}{4}\\\\ & = \dfrac{2}{4}\\\\ & = \dfrac{1}{2}\end{aligned}[/tex]
[tex]\textsf{Therefore}: \quad\log_b9=\dfrac{1}{2}[/tex]