Respuesta :

Exterior Angle Inequality Theorem

[tex] \normalsize\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \ \ \ }}[/tex]

Direction:

Use the Exterior Angle Inequality Theorem to find the measure of each angle below.

Answer:

[tex] \huge \underline{\boxed{\sf \red{ \angle C = 27^{\circ} }}}[/tex]

[tex] \huge \underline{\boxed{\sf \red{ \angle D = 153^{\circ} }}}[/tex]

Solution:

Add the ∠A and ∠B and minus it to 180° to know the measure of ∠C. To find the ∠D add only the ∠A and ∠B.

Finding ∠C

[tex]\large\tt{{180}^{\circ} = \angle A + \angle B + \angle C}[/tex]

[tex]\large\tt{{180}^{\circ} = {35}^{\circ} + {118}^{\circ} + \angle C }[/tex]

[tex]\large\tt{{180}^{\circ} = {153}^{\circ} + \angle C }[/tex]

[tex]\large\tt{{180}^{\circ} - {153}^{\circ} = \angle C }[/tex]

[tex]\large\tt{{27}^{\circ} = \angle C }[/tex]

[tex]\large{\boxed{\tt{\angle C = {27}^{\circ}}} }[/tex]

Finding ∠D or ∠ACD

[tex]\large\tt{ \angle A + \angle B = \angle ACD }[/tex]

[tex]\large\tt{ {35}^{\circ} + {118}^{\circ} = \angle ACD }[/tex]

[tex]\large\tt{ {153}^{\circ} = \angle ACD }[/tex]

[tex]\large{\boxed{\tt{\angle ACD = {153}^{\circ} }}}[/tex]

[tex] \normalsize\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \ \ \ }}[/tex]

[tex] \\ [/tex]

#CarryOnLearning

ACCESS MORE