Respuesta :
Answer:
- [tex]3*10^{-6}[/tex] or [tex]0.000003[/tex]
Given expression:
- [tex](6.3*10^{-2}) : (2.1*10^4)[/tex]
Simplify it in steps below:
- [tex](6.3*10^{-2}) : (2.1*10^4) =[/tex]
- [tex](6.3 :2.1)*(10^{-2}:10^4)=[/tex]
- [tex]3*(10^{-2-4})=[/tex]
- [tex]3*10^{-6}[/tex] or [tex]0.000003[/tex]
Used properties:
[tex]\cfrac{ab}{cd}=\cfrac{a}{c}*\cfrac{b}{d}[/tex]
[tex]a^b:a^c=a^{b-c}[/tex]
[tex]a^{-b}=1/a^b[/tex]
Answer:
[tex]3\times {10^{-6}}[/tex]
Step-by-step explanation:
[tex]\dfrac{6.3 \times 10^{-2}}{2.1 \times 10^4}[/tex]
[tex]=\dfrac{6.3 }{2.1}\times \dfrac{10^{-2}}{10^4}[/tex]
[tex]=3\times \dfrac{10^{-2}}{10^4}[/tex]
[tex]\textsf{Apply exponent rule} \quad \dfrac{a^b}{a^c}=a^{b-c}:[/tex]
[tex]=3\times {10^{(-2-4)}}[/tex]
[tex]=3\times {10^{-6}}[/tex]