Respuesta :
[tex]{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}} [/tex]
‣ A coin is tossed three times.
[tex] {\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}} [/tex]
‣ The probability of getting,
1) Exactly 3 tails
2) At most 2 heads
3) At least 2 tails
4) Exactly 2 heads
5) Exactly 3 heads
[tex] {\large{\textsf{\textbf{\underline{\underline{Using \: Formula :}}}}}} [/tex]
[tex]\star \: \tt P(E)= {\underline{\boxed{\sf{\red{ \dfrac{ Favourable \: outcomes }{Total \: outcomes} }}}}}[/tex]
[tex] {\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}} [/tex]
★ When three coins are tossed,
then the sample space = {HHH, HHT, THH, TTH, HTH, HTT, THT, TTT}
[here H denotes head and T denotes tail]
⇒Total number of outcomes [tex] \tt [ \: n(s) \: ] [/tex] = 8
1) Exactly 3 tails
Here
• Favourable outcomes = {HHH} = 1
• Total outcomes = 8
[tex] \therefore \sf Probability_{(exactly \: 3 \: tails)} = \red{ \dfrac{1}{8}} [/tex]
2) At most 2 heads
[It means there can be two or one or no heads]
Here
• Favourable outcomes = {HHT, THH, HTH, TTH, HTT, THT, TTT} = 7
• Total outcomes = 8
[tex] \therefore \sf Probability_{(at \: most \: 2 \: heads)} = \green{ \dfrac{7}{8}} [/tex]
3) At least 2 tails
[It means there can be two or more tails]
Here
• Favourable outcomes = {TTH, TTT, HTT, THT} = 4
• Total outcomes = 8
[tex] \longrightarrow \sf Probability_{(at \: least \: 2 \: tails)} = \dfrac{4}{8}[/tex]
[tex] \therefore \sf Probability_{(at \: least \: 2 \: tails)} = \orange{\dfrac{1}{2}}[/tex]
4) Exactly 2 heads
Here
• Favourable outcomes = {HTH, THH, HHT } = 3
• Total outcomes = 8
[tex] \therefore \sf Probability_{(exactly \: 2 \: heads)} = \pink{ \dfrac{3}{8}} [/tex]
5) Exactly 3 heads
Here
• Favourable outcomes = {HHH} = 1
• Total outcomes = 8
[tex]\therefore \sf Probability_{(exactly \: 3 \: heads)} = \purple{ \dfrac{1}{8}} [/tex]
[tex]\rule{280pt}{2pt}[/tex]