The area A of a trapezoid with parallel sides of lengths A andB and height H is a=1/2(a+b)h

Answer:
[tex]\sf D)\ \dfrac{2A}{a+b}=h\ \ \textsf{or}\ \ 2A\div(a+b)=h[/tex]
Step-by-step explanation:
Given: A = ½(a + b)h
We need to solve for h.
1. Rewrite the equation:
[tex]\sf A=\dfrac{1}{2}(a+b)h \implies A=\dfrac{1}{2}h(a+b)[/tex]
2. Divide both sides by (a + b):
[tex]\sf \\\implies \dfrac{A}{a+b}=\dfrac{\dfrac{1}{2}h(a+b)}{a+b}\\\\\implies \dfrac{A}{a+b}=\dfrac{1}{2}h[/tex]
3. Multiply both sides by 2:
[tex]\sf \\\implies 2\left(\dfrac{A}{a+b}\right)=2\left(\dfrac{1}{2}h\right)\\\\\implies \dfrac{2A}{a+b}=h\ \ \textsf{or}\ \ 2A\div(a+b)=h[/tex]