Respuesta :
The given differential equation
[tex]x(5x+4y)y' + y(15x+4y) = 0[/tex]
is indeed homogeneous, since we can write
[tex]\implies y' = -\dfrac{y(15x+4y)}{x(5x+4y)} = -\dfrac{\frac yx \left(15 + 4\frac yx\right)}{5 + 4\frac yx}[/tex]
Let [tex]y = xv[/tex], so that [tex]y' = xv' + v[/tex]. Then [tex]v=\frac yx[/tex] and the equation transforms to
[tex]xv' + v = -\dfrac{v(15+4v)}{5+4v}[/tex]
Rewrite a bit and separate the variables:
[tex]xv' = -\dfrac{v(15+4v)}{5+4v} - v[/tex]
[tex]xv' = -\dfrac{v(15+4v) + v(5+4v)}{5+4v}[/tex]
[tex]xv' = -\dfrac{v(20+8v)}{5+4v}[/tex]
[tex]\dfrac{5+4v}{v(20+8v)} \, dv = -\dfrac{dx}x[/tex]
Integrate both sides. On the left, take the partial fraction decomposition,
[tex]\dfrac{5+4v}{v(20+8v} = \dfrac av + \dfrac b{20+8v}[/tex]
[tex]\implies 5+4v = a(20+8v) + bv = 20a + (8a+b)v[/tex]
[tex]\implies \begin{cases}20a=5 \\ 8a+b=4 \end{cases} \implies a=4,b=-28[/tex]
Proceed with the integrals.
[tex]\displaystyle \int \left(\frac4v - \frac{28}{20+8v}\right) \, dv = - \int \frac{dx}x[/tex]
[tex]4 \ln|v| - \dfrac{14}4 \ln|20+8v| = -\ln|x| + C[/tex]
Get the solution back in terms of [tex]y[/tex] and [tex]x[/tex].
[tex]4 \ln\left|\dfrac yx\right| - \dfrac{14}4 \ln\left|20+8\dfrac yx\right| = -\ln|x| + C[/tex]
[tex]16 \ln\left|\dfrac yx\right| - 14 \ln\left|20+8\dfrac yx\right| = -4\ln|x| + C[/tex]
[tex]16 (\ln|y| - \ln|x|) - 14 (\ln|20x+8y| - \ln|x|) = -4\ln|x| + C[/tex]
[tex]\boxed{16 \ln|y| - 14 \ln|20x+8y| = -2 \ln|x| + C}[/tex]