Respuesta :

Answer:

1220 ft squared

Step-by-step explanation:

(44 x 30) - (10 x 10)

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{1220 square feet}[/tex]

-------------------------------------------------------------------------------------------------------------

Given: [tex]\textsf{Total Dimensions = 44 ft x 30 ft, Inner Dimensions = 10 ft x 10 ft}[/tex]

Find:  [tex]\textsf{Area of the shaded region}[/tex]

Solution:  We need to first determine the area of the total rectangle and then we subtract the inner rectangle from that which would give us the shaded region.

Determine the area of the total rectangle

  • [tex]A\textsf{ = l * w}[/tex]
  • [tex]A_{total}\textsf{ = 44 ft * 30 ft}[/tex]
  • [tex]A_{total}\textsf{ = 1320 ft}^2[/tex]

Determine the area of the inner rectangle

  • [tex]A\textsf{ = l * w}[/tex]
  • [tex]A_{inner}\textsf{ = 10 ft * 10 ft}[/tex]
  • [tex]A_{inner}\textsf{ = 100 ft}^2[/tex]

Subtract the inner rectangle from the total

  • [tex]A_{shaded} = A_{total} - A_{inner}[/tex]
  • [tex]A_{shaded}\textsf{ = 1320 ft}^2\textsf{ - 100 ft}^2[/tex]
  • [tex]A_{shaded}\textsf{ = 1220 ft}^2[/tex]

Therefore, the shaded area would consist of 1220 square feet.

ACCESS MORE