Respuesta :

By direct substitution and simplification, the trigonometric function z = cos (2 · x + 3 · y) represents a solution of the partial differential equation  [tex]\frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z[/tex].

How to analyze a differential equation

Differential equations are expressions that involve derivatives. In this question we must prove that a given expression is a solution of a differential equation, that is, substituting the variables and see if the equivalence is conserved.

If we know that [tex]z = \cos (2\cdot x + 3\cdot y)[/tex] and [tex]\frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z[/tex], then we conclude that:

[tex]\frac{\partial t}{\partial x} = -2\cdot \sin (2\cdot x + 3\cdot y)[/tex]

[tex]\frac{\partial^{2} t}{\partial x^{2}} = - 4 \cdot \cos (2\cdot x + 3\cdot y)[/tex]

[tex]\frac{\partial t}{\partial y} = - 3 \cdot \sin (2\cdot x + 3\cdot y)[/tex]

[tex]\frac{\partial^{2} t}{\partial y^{2}} = - 9 \cdot \cos (2\cdot x + 3\cdot y)[/tex]

[tex]- 4\cdot \cos (2\cdot x + 3\cdot y) + 9\cdot \cos (2\cdot x + 3\cdot y) = 5 \cdot \cos (2\cdot x + 3\cdot y) = 5\cdot z[/tex]

By direct substitution and simplification, the trigonometric function z = cos (2 · x + 3 · y) represents a solution of the partial differential equation  [tex]\frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z[/tex].

To learn more on differential equations: https://brainly.com/question/14620493

#SPJ1

ACCESS MORE