assume that x and y are both differentiable functions of t and find rhe required values of dy/dt and dx/dt. xy=4. find dy/dt, given x=2 and dx/dt =10

Respuesta :

Differentiate both sides with respect to [tex]t[/tex], using the product and chain rules on the left side.

[tex]xy = 4 \implies x\dfrac{dy}{dt} + y \dfrac{dx}{dt} = 0[/tex]

When [tex]x=2[/tex], the given equation tells us that [tex]2y=4\implies y=2[/tex]. Then if [tex]\frac{dx}{dt}=10[/tex], it follows that

[tex]2\dfrac{dy}{dt} + 2\times10 = 0 \implies \dfrac{dy}{dt} = \boxed{-10}[/tex]