Guys can you please help me with The Question #15 A). and B). of The Factoring for me, please? :)
![Guys can you please help me with The Question 15 A and B of The Factoring for me please class=](https://us-static.z-dn.net/files/d74/82d7220721e30402bfcbbb8882b5d940.jpg)
Answer:
(a) width = (x - 1)
length = (7x - 6)
(b) Area = 350 cm²
Perimeter = 114 cm
Step-by-step explanation:
Given equation: [tex]7x^2-13x+6[/tex]
⇒ a = 7, b = -13, c = 6
Find 2 two numbers that multiply to ac and sum to b: -6 and -7
Rewrite b as the sum of these 2 numbers:
[tex]\implies 7x^2-7x-6x+6[/tex]
Factorize the first two terms and the last two terms separately:
[tex]\implies 7x(x-1)-6(x-1)[/tex]
Factor out the common term (x - 1):
[tex]\implies (7x-6)(x-1)[/tex]
Therefore:
Substitute the given value of x = 8 into the equations to find the area and perimeter:
[tex]\begin{aligned}x=8cm \implies \textsf{Area} & = 7(8)^2-13(8)+6\\& = 448-104+6\\& = 350 \sf \:\: cm^2\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Perimeter} & = 2(\sf width+length)\\& =2[(x-1)+(7x-6)]\\ & = 2[(8-1)+(7(8)-6)]\\ & = 2[7+(56-6)] \\& = 2(7+50)\\& = 2(57)\\ & = 114 \sf \:\: cm\end{aligned}[/tex]
Answer:
See below ~
Step-by-step explanation:
[tex]\textsf {Question 15(A) :}[/tex]
[tex]\textsf {Given :}[/tex]
[tex]\implies \mathsf {7x^{2} - 13x + 6}[/tex]
[tex]\textsf {Splitting the middle term :}[/tex]
[tex]\implies \mathsf {7x^{2} - 7x - 6x + 6}[/tex]
[tex]\textsf {Grouping common terms :}[/tex]
[tex]\implies \mathsf {7x(x - 1) - 6(x - 1)}[/tex]
[tex]\textsf {Dimensions are :}[/tex]
[tex]\textsf {Question 15(B) :}[/tex]
[tex]\textsf {Formula for perimeter :}[/tex]
[tex]\implies \mathsf {2 \times (length + width)}[/tex]
[tex]\implies \mathsf {2 \times (7x - 6 + x - 1)}[/tex]
[tex]\implies \mathsf {2 \times (8x-7)}[/tex]
[tex]\textsf {Substitute x = 8 :}[/tex]
[tex]\implies \mathsf {2 \times [8(8)-7]}[/tex]
[tex]\implies \mathsf {2 \times (64-7)}[/tex]
[tex]\implies \mathsf {2 \times 57}[/tex]
[tex]\implies \mathsf {Perimeter = 114 cm}[/tex]
[tex]\textsf {Now substitute x = 8 in the area formula :}[/tex]
[tex]\implies \mathsf {7(8)^{2} - 13(8) + 6}[/tex]
[tex]\implies \mathsf {7(64) - 104 + 6}[/tex]
[tex]\implies \mathsf {448 - 98}[/tex]
[tex]\implies \mathsf {Area = 350 cm^{2}}[/tex]