Respuesta :
[tex]\\ \rm\Rrightarrow y=Acos(Bx+C)+D[/tex]
- This is the general formula and the period is 2π/B
Now our given function
[tex]\\ \rm\Rrightarrow y=8cos\left(5\pi x+\dfrac{3\pi}{2}\right)-9[/tex]
On comparing we get
- A=8
- B=5π
- C=3π/2
- D=-9
Period:-
[tex]\\ \rm\Rrightarrow \dfrac{2\pi}{B}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{2\pi}{5\pi}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{2}{5}[/tex]
Answer:
[tex]\textsf{Period}=\dfrac{2}{5}[/tex]
Step-by-step explanation:
Standard form of a cosine function:
f(x) = A cos(B(x + C)) + D
- A = amplitude (height from the mid-line to the peak)
- 2π/B = period (horizontal distance between consecutive peaks)
- C = phase shift (horizontal shift - positive is to the left)
- D = vertical shift
Given function:
[tex]y= 8 \cos \left(5 \pi x+\dfrac{3 \pi}{2}\right)-9[/tex]
[tex]\implies y= 8 \cos \left(5 \pi \left(x+\dfrac{3}{10}\right)\right)-9[/tex]
Comparing with the standard form:
[tex]\implies \textsf{B}=5 \pi[/tex]
[tex]\implies \textsf{Period}=\dfrac{2 \pi}{\sf B}=\dfrac{2 \pi}{5 \pi}=\dfrac{2}{5}[/tex]