Respuesta :

[tex]\\ \rm\Rrightarrow y=Acos(Bx+C)+D[/tex]

  • This is the general formula and the period is 2π/B

Now our given function

[tex]\\ \rm\Rrightarrow y=8cos\left(5\pi x+\dfrac{3\pi}{2}\right)-9[/tex]

On comparing we get

  • A=8
  • B=5π
  • C=3π/2
  • D=-9

Period:-

[tex]\\ \rm\Rrightarrow \dfrac{2\pi}{B}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{2\pi}{5\pi}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{2}{5}[/tex]

Answer:

[tex]\textsf{Period}=\dfrac{2}{5}[/tex]

Step-by-step explanation:

Standard form of a cosine function:

f(x) = A cos(B(x + C)) + D

  • A = amplitude (height from the mid-line to the peak)
  • 2π/B = period (horizontal distance between consecutive peaks)
  • C = phase shift (horizontal shift - positive is to the left)
  • D = vertical shift

Given function:

      [tex]y= 8 \cos \left(5 \pi x+\dfrac{3 \pi}{2}\right)-9[/tex]

[tex]\implies y= 8 \cos \left(5 \pi \left(x+\dfrac{3}{10}\right)\right)-9[/tex]

Comparing with the standard form:

[tex]\implies \textsf{B}=5 \pi[/tex]

[tex]\implies \textsf{Period}=\dfrac{2 \pi}{\sf B}=\dfrac{2 \pi}{5 \pi}=\dfrac{2}{5}[/tex]