[tex]f(x) = a \cos(bx + c) + d[/tex]
Where a is the amplitude
b is used to find the period
[tex] \frac{2\pi}{b} [/tex]
The phase shift can be fined by doing
[tex]bx + c = 0[/tex]
then the midline is y=d.
Finding A: The amplitude is the half of the distance between the. y values of the max and the min.
[tex] \frac{2 - ( - 3)}{2} = 2.5[/tex]
So a=2.5
Note: A is Positve never negative so if you get a negative a, take the absolute value.
Period:
Find the distance between x values,
[tex] - 1 - ( - 4) = 3[/tex]
The distance between the x values of the max and min x values is half the distance of the period. So the period is 6.
[tex] \frac{2\pi}{b} = 6[/tex]
[tex]b = \frac{\pi}{3} [/tex]
Note : If b is negative, take the absolute value.
Finding the midline.
To find the midline find the midpoint of the max and min y values.
[tex] \frac{2 + ( - 3)}{2} [/tex]
[tex] \frac{ - 1}{2} [/tex]
So our midline is
[tex] - 0.5[/tex]
So as of right now, our trig formula is
[tex]2.5 \cos( \frac{\pi}{3}x ) - 0.5[/tex]
Plug in any x or y value,
[tex]2.5 \cos( \frac{\pi}{3} ( - 4)) - 0.5 = 2[/tex]
[tex]2.5 \cos( \frac{ - 4\pi}{3} ) = 2.5[/tex]
[tex] \cos( \frac{ - 4\pi}{3} ) = 1[/tex]
This is not right so we need to shift this to the nearest value that is right
If we subtract,
[tex] \frac{ - 2\pi}{3} [/tex]
We will have a cosine value of 1.
So our phase shift is
[tex] 2.5\cos( \frac{\pi}{3} x - \frac{2\pi}{3} ) - 0.5[/tex]
Our phase shift would be 2 units to the right.
[tex]2.5 \cos( \frac{\pi}{3} (x - 2)) - 0.5[/tex]