contestada

f is a trigonometric function of the form f(x) = a cos(bx+c)+ d.
Below is the graph of f(a). The function has a maximum point at (-4, 2) and a minimum point at (-1,-3).
Find a formula for f(x). Give an exact expression.

Respuesta :

[tex]f(x) = a \cos(bx + c) + d[/tex]

Where a is the amplitude

b is used to find the period

[tex] \frac{2\pi}{b} [/tex]

The phase shift can be fined by doing

[tex]bx + c = 0[/tex]

then the midline is y=d.

Finding A: The amplitude is the half of the distance between the. y values of the max and the min.

[tex] \frac{2 - ( - 3)}{2} = 2.5[/tex]

So a=2.5

Note: A is Positve never negative so if you get a negative a, take the absolute value.

Period:

Find the distance between x values,

[tex] - 1 - ( - 4) = 3[/tex]

The distance between the x values of the max and min x values is half the distance of the period. So the period is 6.

[tex] \frac{2\pi}{b} = 6[/tex]

[tex]b = \frac{\pi}{3} [/tex]

Note : If b is negative, take the absolute value.

Finding the midline.

To find the midline find the midpoint of the max and min y values.

[tex] \frac{2 + ( - 3)}{2} [/tex]

[tex] \frac{ - 1}{2} [/tex]

So our midline is

[tex] - 0.5[/tex]

So as of right now, our trig formula is

[tex]2.5 \cos( \frac{\pi}{3}x ) - 0.5[/tex]

Plug in any x or y value,

[tex]2.5 \cos( \frac{\pi}{3} ( - 4)) - 0.5 = 2[/tex]

[tex]2.5 \cos( \frac{ - 4\pi}{3} ) = 2.5[/tex]

[tex] \cos( \frac{ - 4\pi}{3} ) = 1[/tex]

This is not right so we need to shift this to the nearest value that is right

If we subtract,

[tex] \frac{ - 2\pi}{3} [/tex]

We will have a cosine value of 1.

So our phase shift is

[tex] 2.5\cos( \frac{\pi}{3} x - \frac{2\pi}{3} ) - 0.5[/tex]

Our phase shift would be 2 units to the right.

[tex]2.5 \cos( \frac{\pi}{3} (x - 2)) - 0.5[/tex]

ACCESS MORE