Explanation:
Givens:
[tex]h = 20 \: m[/tex]
[tex]v _{ix} = 15 \cos(37) = 11.97[/tex]
[tex]v _{iy} = 15 \sin(37) = 9.03[/tex]
[tex]a _{y} = - 9.8[/tex]
Let t=2 be the final velocity. Since Velocity stays the same horizontal , acceleration due to gravity changes the vertical direction
Use this equation
[tex]v _{y} = v _{iy} + a _{y}(t) [/tex]
Plug in the knowns
[tex]v _{y} = 15 \sin(37) +2 ( - 9.8)[/tex]
[tex]v _{y} = - 10.57[/tex]
So the velocity in the y direction at 2 seconds is -10.57
The velocity in the x direction at 2 seconds is 11.97
Use the Pythagorean theorem to find the total velocity
[tex]v = \sqrt{( - 10.57) {}^{2} + (11.97) {}^{2} } [/tex]
[tex]v = 15.97[/tex]
b. The range at which it strike the ground.
We need to find when the velocity at the top is zero.
Using the y direction,
[tex]0 = v \sin( 37 ) - 9.8(t)[/tex]
[tex]t = 0.921[/tex]
Next, find the height of the max.
[tex]h = \frac{1}{2} ( 9.8)(0.921) {}^{2} = 4.16[/tex]
So the total distance is 4.16+20= 24.16
Next to find the total time it falls
[tex]24.16 = \frac{1}{2} (9.8) {t}^{2} [/tex]
[tex]t = 2.2[/tex]
So our total flight time is
[tex]3.141[/tex]
Range is
[tex]v \cos(37) (3.141) = 37.63[/tex]