Respuesta :

Answer:

[tex]\textsf {1. x = 28}[/tex]

[tex]\textsf {2. a = c = e = f = 55 and b = d = 125}[/tex]

Step-by-step explanation:

[tex]\textsf {Question 1}[/tex]

[tex]\textsf {Here, the Angle Sum Property needs to be remembered, }\\\textsf {which states that the internal angle sum of a triangle is }\\\textsf {equal to 180 degrees.}[/tex]

[tex]\textsf {Solving :}[/tex]

[tex]\implies \mathsf {5x - 60 + 2x + 40 + 3x - 80 = 180}[/tex]

[tex]\implies \mathsf {10x - 100 = 180}[/tex]

[tex]\implies \mathsf {10x = 280}[/tex]

[tex]\implies \mathsf {x = \frac{280}{10}}[/tex]

[tex]\implies \mathsf {x = 28}[/tex]

[tex]\textsf {Question 2}[/tex]

[tex]\textsf {Now, remember the sum of linear angles is 180,}\\ \textsf{vertical angles are equal, and corresponding angles are equal.}[/tex]

[tex]\textsf {Hence, e = f = a = c = 180 - 125}[/tex]

[tex]\implies \mathsf {a = c = e = f = 55}[/tex]

[tex]\textsf {Also, b and d are equal to the listed angle as}\\ \textsf{d corresponds to it, and b is the vertical angle of d. }[/tex]

[tex]\implies \mathsf {b = d = 125}[/tex]

[tex] \star\:{\underline{\underline{\sf{\purple{ \: Question \: 1\: }}}}}[/tex]

[tex]{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}[/tex]

‣ Angle A = 5x - 60°

‣ Angle B = 2x + 40°

‣ Angle C = 3x - 80°

[tex] {\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}[/tex]

‣ The value of [tex]x[/tex]

[tex]{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}[/tex]

By angle sum property [ASP] of a triangle which states that the sum of all angles of a triangle = 180°

[tex] \longrightarrow \tt A+B+C =180°[/tex]

[tex] \longrightarrow \tt (5x - 60) + (2x + 40) + (3x - 80) =180[/tex]

[tex]\longrightarrow \tt 5x + 2x + 3x - 60 + 40 - 80 =180[/tex]

[tex]\longrightarrow \tt 10x - 60 + 40 - 80 =180[/tex]

[tex]\longrightarrow \tt 10x - 140 + 40 =180[/tex]

[tex]\longrightarrow \tt 10x - 100 = 180[/tex]

[tex]\longrightarrow \tt 10x = 180 + 100[/tex]

[tex]\longrightarrow \tt x = \cancel{\dfrac{280}{10} }[/tex]

[tex]\longrightarrow \tt x = \purple{28 \degree}[/tex]

Therefore, the value of [tex]x[/tex] is 28°

[tex] \star\:{\underline{\underline{\sf{\red{ \: Question \: 2\: }}}}}[/tex]

[tex]{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}[/tex]

‣ Line p is parallel to line q which is intersected by a transversal.

[tex] {\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}[/tex]

‣ The unknown angles.

[tex]{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}[/tex]

Finding angle [tex]e[/tex]

[linear pair axiom]

[tex] \longrightarrow \tt 125 \degree + \angle e = 180 \degree[/tex]

[tex] \longrightarrow \tt \angle e = 180 \degree - 125 \degree[/tex]

[tex]\longrightarrow \tt \angle e = \red{55 \degree}[/tex]

Now,

For angle [tex]f[/tex]

[Vertically opposite angles]

[tex]\longrightarrow \tt \angle f = \angle e[/tex]

[tex]\longrightarrow \tt \angle f = \green{55 \degree }[/tex]

Now,

For angle [tex]a[/tex]

[Corresponding angles]

[tex]\longrightarrow \tt \angle a = \angle e[/tex]

[tex]\longrightarrow \tt \angle a = \orange{55 \degree}[/tex]

Now,

For angle [tex]d[/tex]

[Corresponding angles]

[tex]\longrightarrow \tt \angle d = \pink{125 \degree}[/tex]

Now,

For angle [tex]c[/tex]

[Vertically opposite angles]

[tex]\longrightarrow \tt \angle c = \angle a[/tex]

[tex]\longrightarrow \tt \angle c = \gray{ 55 \degree}[/tex]

Now,

For angle [tex]b[/tex]

[Vertically opposite angles]

[tex]\longrightarrow \tt \angle b = \angle d [/tex]

[tex]\longrightarrow \tt \angle b = \purple{ 125 \degree}[/tex]

Hence,

★ Angle A = 55°

★ Angle B = 125°

★ Angle C = 55°

★ Angle D = 125°

★ Angle E = 55°

★ Angle F = 55°

[tex] {\underline{\rule{290pt}{2pt}}} [/tex]

ACCESS MORE