Answer:
32 m
Step-by-step explanation:
Trigonometric ratios
[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]
where:
Calculate the height of the radio mast using the tan trig ratio.
Given:
[tex]\implies \sf tan(30^{\circ})=\dfrac{ \sf h}{96}[/tex]
[tex]\implies \sf h=96 \tan (30^{\circ})[/tex]
[tex]\implies \sf h=\dfrac{96 \sqrt{3}}{3}[/tex]
[tex]\implies \sf h=32 \sqrt{3}\:\:m[/tex]
To calculate the distance from the second point to the base of the mast, use the tan trig ratio:
Given:
[tex]\implies \sf tan(60^{\circ})=\dfrac{ \sf 32 \sqrt{3}}{d}[/tex]
[tex]\implies \sf \sqrt{3}=\dfrac{ \sf 32 \sqrt{3}}{d}[/tex]
[tex]\implies \sf d=\dfrac{ \sf 32 \sqrt{3}}{\sqrt{3}}[/tex]
[tex]\implies \sf d=32\:\: m[/tex]