Respuesta :

Answer:

QR is approximately 20.6.

Step-by-step explanation:

Look at the right triangle SRQ.

In that triangle we know that:

SQ = 55

m∠QSR = 22°

Choosing angle QSR as a reference angle, QR is opposite side and SQ is hypotenuse.

Which of the trigonometrical functions use opposite and hypotenuse?

Recall  SOH CAH TOA - SineOppositeHypotenuse CosineAdjacentHypotnuse TangentOppositeAdjacent

Sine uses both opposite and hypotenuse.

[tex]\sin{\theta} = \frac{\text{opposite}}{\text{hypotenuse}}[/tex]

Aply the formula.

[tex]\sin{(m\angle\text{QSR})} = \frac{\text{QR}}{\text{SQ}}[/tex]

[tex]\sin{22^\circ} = \frac{\text{QR}}{55}[/tex]

Multiply with 55 to get rid of the fraction and isolate QR.

[tex]\sin{22^\circ} \cdot 55 = \frac{\text{QR}}{55}\cdot 55[/tex]

[tex]\sin{22^\circ} \cdot 55 = \text{QR}[/tex]

[tex]\text{QR} \approx 20.6[/tex]

ACCESS MORE