The values of q, r, s, and t are:
The given function is [tex]g(x) = 2x^2 - 8[/tex]
The inverse of g(x) for x ≥ 0 is [tex]f(x) = \sqrt{\frac{1}{2}x+4}[/tex]
The inverse of g(x) for x ≤ 0 is [tex]d(x) = -\sqrt{\frac{1}{2}x + 4}[/tex]
For x= -8
d(-8)= [tex]-\sqrt{\frac{1}{2} (-8) + 4}[/tex]
q= d(-8) = 0
r= f(0)
f(x) = [tex]\sqrt{\frac{1}{2}x + 4 } \\\sqrt{\frac{1}{2} (0) +4 }[/tex]
f(0)= \sqrt 4
f(0)= 2
r= 2
f(10)= \sqt 9
s= 3
t= d(10)
d(10)= -\sqrt9
t= -3
Read more about inverse functions here:
https://brainly.com/question/13121563
#SPJ1