Function: g(x)=2x^2-8.
For x > 0, the inverse is f(x)=sqrt 1/2x+4.
For x < 0, the inverse function is d(x)= -sqrt 1/2x+4.
x: -8, 0, 10.
f(x): 0, r, s.
d(x): q, -2, t.
q=?
r=?
s=?
t=?

Respuesta :

The values of q, r, s, and t are:

  • 0
  • 2
  • 3
  • -3

Calculations and Parameters

The given function is [tex]g(x) = 2x^2 - 8[/tex]

The inverse of g(x) for x ≥ 0 is [tex]f(x) = \sqrt{\frac{1}{2}x+4}[/tex]

The inverse of g(x) for x ≤ 0 is [tex]d(x) = -\sqrt{\frac{1}{2}x + 4}[/tex]

For x= -8

d(-8)= [tex]-\sqrt{\frac{1}{2} (-8) + 4}[/tex]

q= d(-8) = 0

r= f(0)

f(x) = [tex]\sqrt{\frac{1}{2}x + 4 } \\\sqrt{\frac{1}{2} (0) +4 }[/tex]

f(0)= \sqrt 4

f(0)= 2

r= 2

f(10)= \sqt 9

s= 3

t= d(10)

d(10)= -\sqrt9

t= -3

Read more about inverse functions here:

https://brainly.com/question/13121563

#SPJ1

ACCESS MORE