Answer:
63 yd²
Step-by-step explanation:
Use the formula:
[tex]\text{area of triangle} = \frac{1}{2} \times \text{side}_1 \times \text{side}_2 \times \sin{(\text{includ\e ed angle})}[/tex]
Given:
side₁ = 14.5 yd
side₂ = 9 yd
included angle = 106°
Insert values in formula.
[tex]\text{area of triangle} = \frac{1}{2} \times \text{side}_1 \times \text{side}_2 \times \sin{(\text{includ\e ed angle})}[/tex]
[tex]\text{area of triangle} = \frac{1}{2} \times 14.5 \text{ yd} \times 9 \text{ yd} \times \sin{(106^\circ)}[/tex]
[tex]\text{area of triangle} = 65.25 \times \sin{(106^\circ)} \text{ yd}^2[/tex]
[tex]\text{area of triangle} \approx 62.7222 \text{ yd}^2[/tex]
Rounded to the nearest whole square yard:
[tex]\text{area of triangle} = 63 \text{ yd}^2[/tex]