Answer: 0
Step-by-step explanation:
I will assume you meant [tex]h(x)=\frac{1}{8^{3}}-x^2[/tex], which is equal to [tex]h(x)=\frac{1}{512}-x^2[/tex].
[tex]f(-2)=\frac{1}{512}-(-2)^{2}=-\frac{2047}{512}\\\\f(2)=\frac{1}{512}-2^{2}=-\frac{2047}{512}\\\\\therefore \frac{f(2)-f(-2)}{2-(-2)}=\frac{-\frac{2047}{512}-\left(-\frac{2047}{512} \right)}{2-(-2)}=\boxed{0}[/tex]