The value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
The expression is given as:
(2x -3)^4
Using the binomial expansion, we have:
[tex](2x -3)^4 = ^4C_0 * (2x)^4 * (-3)^0 +^4C_1 * (2x)^3 * (-3)^1 + ^4C_2 * (2x)^2 * (-3)^2 + ^4C_3 * (2x)^1 * (-3)^3 + ^4C_4 * (2x)^0 * (-3)^4[/tex]
Evaluate the combination factors.
So, we have:
[tex](2x -3)^4 = 1 * (2x)^4 * (-3)^0 + 4 * (2x)^3 * (-3)^1 + 6 * (2x)^2 * (-3)^2 + 4 * (2x)^1 * (-3)^3 + 1 * (2x)^0 * (-3)^4[/tex]
Evaluate the exponents and the products
[tex](2x -3)^4 = 16x^4 + 96x^3 +216x^2 -216x + 81[/tex]
Hence, the value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
Read more about binomial expansions at:
https://brainly.com/question/13602562
#SPJ1