Respuesta :

The value of expanding (2x -3)^4 is 16x^4  + 96x^3  +216x^2 -216x + 81

How to expand the expression?

The expression is given as:

(2x -3)^4

Using the binomial expansion, we have:

[tex](2x -3)^4 = ^4C_0 * (2x)^4 * (-3)^0 +^4C_1 * (2x)^3 * (-3)^1 + ^4C_2 * (2x)^2 * (-3)^2 + ^4C_3 * (2x)^1 * (-3)^3 + ^4C_4 * (2x)^0 * (-3)^4[/tex]

Evaluate the combination factors.

So, we have:

[tex](2x -3)^4 = 1 * (2x)^4 * (-3)^0 + 4 * (2x)^3 * (-3)^1 + 6 * (2x)^2 * (-3)^2 + 4 * (2x)^1 * (-3)^3 + 1 * (2x)^0 * (-3)^4[/tex]

Evaluate the exponents and the products

[tex](2x -3)^4 = 16x^4 + 96x^3 +216x^2 -216x + 81[/tex]

Hence, the value of expanding (2x -3)^4 is 16x^4  + 96x^3  +216x^2 -216x + 81

Read more about binomial expansions at:

https://brainly.com/question/13602562

#SPJ1

ACCESS MORE