Answer:
1/81
Step-by-step explanation:
In the problem, we are given the expression [tex]\displaystyle \large{(-3)^{-4}}[/tex]. To simplify this expression, we have to use laws of exponents since we cannot directly evaluate negative exponent by default. The law of exponent specifically for this expression is:
[tex]\displaystyle \large{a^{-n}=\dfrac{1}{a^n}}[/tex]
Apply the formula to our given expression in.
[tex]\displaystyle \large{(-3)^{-4}=\dfrac{1}{(-3)^4}}[/tex]
Evaluate the expression.
[tex]\displaystyle \large{(-3)^{-4}=\dfrac{1}{(-3)(-3)(-3)(-3)}}\\\\\displaystyle \large{(-3)^{-4}=\dfrac{1}{81}}[/tex]
Always keep in mind that for [tex]\displaystyle \large{a^{2n}}[/tex] when [tex]\displaystyle \large{a \in \mathbb{R}}[/tex] and [tex]\displaystyle \large{n \in \mathbb{I} - \{0\}}[/tex] the expression will always remain positive.
Please let me know if you have any questions!