Respuesta :

Answer:

1/81

Step-by-step explanation:

In the problem, we are given the expression [tex]\displaystyle \large{(-3)^{-4}}[/tex]. To simplify this expression, we have to use laws of exponents since we cannot directly evaluate negative exponent by default. The law of exponent specifically for this expression is:

[tex]\displaystyle \large{a^{-n}=\dfrac{1}{a^n}}[/tex]

Apply the formula to our given expression in.

[tex]\displaystyle \large{(-3)^{-4}=\dfrac{1}{(-3)^4}}[/tex]

Evaluate the expression.

[tex]\displaystyle \large{(-3)^{-4}=\dfrac{1}{(-3)(-3)(-3)(-3)}}\\\\\displaystyle \large{(-3)^{-4}=\dfrac{1}{81}}[/tex]

Always keep in mind that for [tex]\displaystyle \large{a^{2n}}[/tex] when [tex]\displaystyle \large{a \in \mathbb{R}}[/tex] and [tex]\displaystyle \large{n \in \mathbb{I} - \{0\}}[/tex] the expression will always remain positive.

Please let me know if you have any questions!