Respuesta :

The final value of the given log expression is -28

Logarithm functions

Logarithm functions are inverse of exponential functions. Given the log expression below;

[tex]log\frac{c^5}{\sqrt{b^3}}[/tex]

Given the following parameters

log a = 6

log b = -10

log c = -8

The log expression can be expressed as:

[tex]log\frac{c^5}{\sqrt{b^3}}=logc^5-log(\sqrt{ab^3})\\log\frac{c^5}{\sqrt{b^3}}=5logc-(1/2loga +3/2logb)\\log\frac{c^5}{\sqrt{b^3}}=5(-8)-(1/2(6)+3/2(-10))\\log\frac{c^5}{\sqrt{b^3}}=-40-(3-15)\\log\frac{c^5}{\sqrt{b^3}}=-40+12\\log\frac{c^5}{\sqrt{b^3}}=-28[/tex]

Hence the final value of the given log expression is -28

Learn more on log function here: https://brainly.com/question/13473114

#SPJ1

ACCESS MORE