Find the numerical value of the log expression.
![Find the numerical value of the log expression class=](https://us-static.z-dn.net/files/d5a/6655a7f16427ca024d4ba3e02f7c0c93.png)
The final value of the given log expression is -28
Logarithm functions are inverse of exponential functions. Given the log expression below;
[tex]log\frac{c^5}{\sqrt{b^3}}[/tex]
Given the following parameters
log a = 6
log b = -10
log c = -8
The log expression can be expressed as:
[tex]log\frac{c^5}{\sqrt{b^3}}=logc^5-log(\sqrt{ab^3})\\log\frac{c^5}{\sqrt{b^3}}=5logc-(1/2loga +3/2logb)\\log\frac{c^5}{\sqrt{b^3}}=5(-8)-(1/2(6)+3/2(-10))\\log\frac{c^5}{\sqrt{b^3}}=-40-(3-15)\\log\frac{c^5}{\sqrt{b^3}}=-40+12\\log\frac{c^5}{\sqrt{b^3}}=-28[/tex]
Hence the final value of the given log expression is -28
Learn more on log function here: https://brainly.com/question/13473114
#SPJ1