Answer:
Volume of Cylinder = 300cm^3, Volume of 1 Cone = 100cm^3
Step-by-step explanation:
Let r be the radius
Let h be the Height
Given r = h, we will take h as r.
Volume of cylinder [tex]\pi r^{2} h\\=\pi r^{2} (r)\\=\pi r^{3}[/tex]
Volume of 2 cones [tex]2(\pi r^{2} \frac{h}{3} )\\=2(\pi r^{2} \frac{r}{3} )\\= 2(\frac{\pi r^{3} }{3} )\\=\frac{2}{3} \pi r^{3}[/tex]
Given Total Volume = 500cm^3 = Volume of cylinder + Volume of 2 cones
[tex]\pi r^{3} + \frac{2}{3}\pi r^{3} = 500 \\\frac{5}{3} \pi r^{3} = 500\\\pi r^{3} = 500*\frac{3}{5} \\\pi r^{3} = 300\\r^{3} = \frac{300}{\pi } \\r=\sqrt[3]{\frac{300}{\pi } } cm \\[/tex]
Now we got r and r=h,
Volume of Cylinder [tex]\pi (\sqrt[3]{\frac{300}{\pi } } )^{3}\\=\pi (\frac{300}{\pi } )\\= 300cm^{3}[/tex]
Volume of 1 cone = (Total Volume - Volume of Cylinder) / 2
= (500-300)/2
= 200/2
= 100cm^3