The cylinder and cone have the same radius and height.
The Total Volume is 500cm^3.
What is the Volume of the Cylinder?
What is the Volume of each Cone?

The cylinder and cone have the same radius and height The Total Volume is 500cm3 What is the Volume of the Cylinder What is the Volume of each Cone class=

Respuesta :

Answer:

Volume of Cylinder = 300cm^3, Volume of 1 Cone = 100cm^3

Step-by-step explanation:

Let r be the radius

Let h be the Height

Given r = h, we will take h as r.

Volume of cylinder  [tex]\pi r^{2} h\\=\pi r^{2} (r)\\=\pi r^{3}[/tex]

Volume of 2 cones  [tex]2(\pi r^{2} \frac{h}{3} )\\=2(\pi r^{2} \frac{r}{3} )\\= 2(\frac{\pi r^{3} }{3} )\\=\frac{2}{3} \pi r^{3}[/tex]

Given Total Volume = 500cm^3 = Volume of cylinder + Volume of 2 cones

[tex]\pi r^{3} + \frac{2}{3}\pi r^{3} = 500 \\\frac{5}{3} \pi r^{3} = 500\\\pi r^{3} = 500*\frac{3}{5} \\\pi r^{3} = 300\\r^{3} = \frac{300}{\pi } \\r=\sqrt[3]{\frac{300}{\pi } } cm \\[/tex]

Now we got r and r=h,

Volume of Cylinder  [tex]\pi (\sqrt[3]{\frac{300}{\pi } } )^{3}\\=\pi (\frac{300}{\pi } )\\= 300cm^{3}[/tex]

Volume of 1 cone = (Total Volume - Volume of Cylinder) / 2

= (500-300)/2

= 200/2

= 100cm^3