Respuesta :
[tex]\textbf{Given that,}\\\\~~~\dfrac{5^4}{5^7}\\\\\\=5^{4-7}~~~~~~~~~~~~~~~~~~~~~~~~;\textbf{Apply exponent rule:}~\dfrac{a^m}{a^n} = a^{m-n}\\\\\\=5^{-3}\\\\\\=\dfrac 1{5^3}~~~~~~~~~~~~~~~~~~~~~~~~~~;\textbf{Apply exponent rule:}~ a^{-n} = \dfrac 1 {a^n},~~~a \neq 0 \\\\\\=\dfrac 1{125}\\\\\\=0.008[/tex]
Answer:
[tex] \frac{1}{125} [/tex]
Step-by-step explanation:
[tex]1.apply \: exponent \: rules : \frac{ {x}^{a} }{ {x}^{b} } = {x}^{a - b} [/tex]
[tex] = {5}^{4 - 7} [/tex]
[tex]2.subtract \: the \: number : 4 - 7 = - 3[/tex]
[tex] = {5}^{ - 3} [/tex]
[tex]3.apply \: exponent \: rule : {a}^{ - b} = \frac{1}{ {a}^{b} } [/tex]
[tex] = \frac{1}{ {5}^{3} } [/tex]
[tex]4. \: {5}^{3} = 125[/tex]
[tex] = \frac{1}{125} [/tex]