Respuesta :
Diameter of the ball is equals to [tex]2\sqrt[3]{ \frac{129}{2} }[/tex] centimeter for the given volume of the ball.
What is volume?
" Volume is defined as the total space occupied by 3-dimensional object."
Formula used
Volume of the sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]
Diameter = 2 (radius)
According to the question,
Given,
Volume of the ball = [tex]86\pi[/tex]
'r' represents the radius of the ball
Substitute the value in the formula of the volume of the sphere we get,
[tex]\frac{4}{3} \pi r^{3} = 86\pi[/tex]
⇒[tex]r^{3} = \frac{(86)(3)}{4}[/tex]
⇒[tex]r=\sqrt[3]{\frac{129}{2} }[/tex]
⇒[tex]2r=2(\sqrt[3]{\frac{129}{2} })[/tex]
⇒ diameter [tex]=2(\sqrt[3]{\frac{129}{2} })[/tex] centimeter.
Hence, diameter of the ball is equals to [tex]2\sqrt[3]{ \frac{129}{2} }[/tex] centimeter for the given volume of the ball.
Learn more about volume here
https://brainly.com/question/1578538
#SPJ3