Respuesta :

Esther

Answer:

[tex]\sf \textsf{Equation:}\ y=\dfrac{1}{2}x+8[/tex]

Step-by-step explanation:

The equation of the line can be written in slope-intercept form (y = mx + b):

where:

  • m is the slope
  • b is the y-intercept

To find the equation of a line when given two points, we first need to find the slope of the line.

The slope can be found using the following formula:

[tex]\sf m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

Given the points (-2, 7) and (-8, 4):

y₂ = 4, y₁ = 7

x₂ = -8, x₁ = -2

Substitute the values into the formula:

[tex]\sf m=\dfrac{4-7}{-8-(-2)}\ \textsf{[simplify]}\\\\m=\dfrac{4-7}{-8+2}\ \textsf{[simplify]}\\\\m=\dfrac{-3}{-6}=\dfrac{3}{6}\ \textsf{[reduce]}\\\\m=\dfrac{3\div3}{6\div3}\\\\m=\dfrac{1}{2}[/tex]

Now, use one of the given points to solve for b by substituting the x and y-value into the equation:

[tex]\sf y=\dfrac{1}{2}x+b\\\\4=\dfrac{1}{2}(-8)+b\ \textsf{[multiply]}\\\\4=-4+b\ \textsf{[add 4 to both sides]}\\\\4+4=-4+4+b\\\\8=b[/tex]

[tex]\sf \textsf{Equation of the line:}\ y=\dfrac{1}{2}x+8[/tex]

Check your work:

[tex]\sf y=\dfrac{1}{2}x+8\\\\7=\dfrac{1}{2}(-2)+8\\\\7=-1+8\\\\7=7\ \checkmark[/tex]

[tex]\sf \textsf{Therefore, our equation is:}\ y=\dfrac{1}{2}x+8[/tex]

Learn more here:

brainly.com/question/24436844

brainly.com/question/27913172