Respuesta :
Answer:
[tex]\sf \textsf{Equation:}\ y=\dfrac{1}{2}x+8[/tex]
Step-by-step explanation:
The equation of the line can be written in slope-intercept form (y = mx + b):
where:
- m is the slope
- b is the y-intercept
To find the equation of a line when given two points, we first need to find the slope of the line.
The slope can be found using the following formula:
[tex]\sf m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Given the points (-2, 7) and (-8, 4):
y₂ = 4, y₁ = 7
x₂ = -8, x₁ = -2
Substitute the values into the formula:
[tex]\sf m=\dfrac{4-7}{-8-(-2)}\ \textsf{[simplify]}\\\\m=\dfrac{4-7}{-8+2}\ \textsf{[simplify]}\\\\m=\dfrac{-3}{-6}=\dfrac{3}{6}\ \textsf{[reduce]}\\\\m=\dfrac{3\div3}{6\div3}\\\\m=\dfrac{1}{2}[/tex]
Now, use one of the given points to solve for b by substituting the x and y-value into the equation:
[tex]\sf y=\dfrac{1}{2}x+b\\\\4=\dfrac{1}{2}(-8)+b\ \textsf{[multiply]}\\\\4=-4+b\ \textsf{[add 4 to both sides]}\\\\4+4=-4+4+b\\\\8=b[/tex]
[tex]\sf \textsf{Equation of the line:}\ y=\dfrac{1}{2}x+8[/tex]
Check your work:
[tex]\sf y=\dfrac{1}{2}x+8\\\\7=\dfrac{1}{2}(-2)+8\\\\7=-1+8\\\\7=7\ \checkmark[/tex]
[tex]\sf \textsf{Therefore, our equation is:}\ y=\dfrac{1}{2}x+8[/tex]
Learn more here:
brainly.com/question/24436844
brainly.com/question/27913172