Integrate this two questions
![Integrate this two questions class=](https://us-static.z-dn.net/files/d71/b31757180fc8317d6609150fcd0016f5.jpg)
Simplify the integrands by polynomial division.
[tex]\dfrac{t^2}{1 - 3t} = -\dfrac19 \left(3t + 1 - \dfrac1{1 - 3t}\right)[/tex]
[tex]\dfrac t{1 + 4t} = \dfrac14 \left(1 - \dfrac1{1 + 4t}\right)[/tex]
Now computing the integrals is trivial.
5.
[tex]\displaystyle \int \frac{t^2}{1 - 3t} \, dt = -\frac19 \int \left(3t + 1 - \frac1{1-3t}\right) \, dt \\\\ = -\frac19 \left(\frac32 t^2 + t + \frac13 \ln|1 - 3t|\right) + C \\\\ = \boxed{-\frac{t^2}6 - \frac t9 - \frac{\ln|1-3t|}{27} + C}[/tex]
where we use the power rule,
[tex]\displaystyle \int x^n \, dx = \frac{x^{n+1}}{n+1} + C ~~~~ (n\neq-1)[/tex]
and a substitution to integrate the last term,
[tex]\displaystyle \int \frac{dt}{1-3t} = -\frac13 \int \frac{du}u \\\\ = -\frac13 \ln|u| + C \\\\ = -\frac13 \ln|1-3t| + C ~~~ (u=1-3t \text{ and } du = -3\,dt)[/tex]
8.
[tex]\displaystyle \int \frac t{1+4t} \, dt = \frac14 \int \left(1 - \frac1{1+4t}\right) \, dt \\\\ = \frac14 \left(t - \frac14 \ln|1 + 4t|\right) + C \\\\ = \boxed{\frac t4 - \frac{\ln|1+4t|}{16} + C}[/tex]
using the same approach as above.