Respuesta :

By algebraic handling and factor rules, the polynomial (x - 2) · (x - 5) · (x - √3) · (x + √3) is equivalent to the expanded form x⁴ - 7 · x³ + 7 · x² + 21 · x - 30.

How to expand a quartic function

Herein we must transform a polynomial of the form (x - r₁) · (x - r₂) · (x - r₃) · (x - r₄) to the form a · x⁴ + b · x³ + c · x² + d · x + e by algebraic handling, especially factor rules:

(x - 2) · (x - 5) · (x - √3) · (x + √3)

(x² - 7 · x + 10) · (x² - 3)     Factor rules

x² · (x² - 3) - (7 · x) · (x² - 3) + 10 · (x² - 3)     Distributive and commutative properties

x⁴ - 3 · x² - 7 · x³ + 21 · x + 10 · x² - 30     Distributive property/Definition of power

x⁴ - 7 · x³ + 7 · x² + 21 · x - 30      Distributive property/Definition of addition

By algebraic handling and factor rules, the polynomial (x - 2) · (x - 5) · (x - √3) · (x + √3) is equivalent to the expanded form x⁴ - 7 · x³ + 7 · x² + 21 · x - 30.

To learn more on polynomials: https://brainly.com/question/11536910

#SPJ1