Respuesta :

The value of the quotient (9-6i)/(5+3i) is [tex]\frac{27-57i }{34}[/tex]

How to evaluate the quotient?

The expression is given as:

(9-6i)/(5+3i)

Rewrite properly as:

[tex]\frac{9-6i}{5+3i}[/tex]

Rationalize the expression

[tex]\frac{9-6i}{5+3i} * \frac{5-3i}{5-3i}[/tex]

Evaluate the product

[tex]\frac{45 - 27i - 30i + 18i^2}{25-9i^2}[/tex]

In complex numbers;

i^2 = -1

So, we have:

[tex]\frac{45 - 27i - 30i + 18(-1)}{25-9(-1)}[/tex]

Evaluate the like terms

[tex]\frac{27-57i }{34}[/tex]

Hence, the value of the quotient (9-6i)/(5+3i) is [tex]\frac{27-57i }{34}[/tex]

Read more about quotients at:

https://brainly.com/question/629998

#SPJ1

ACCESS MORE