Respuesta :

By definitions of the hyperbolic functions, we have  proven that [tex]cosh^{2}\theta-sinh^{2}\theta = 1[/tex]

Hyperbolic Functions & Proof of Identities

From the question, we are to prove that

ch²θ - sh²θ = 1

That is,

[tex]cosh^{2}\theta-sinh^{2}\theta = 1[/tex]

By definition

[tex]cosh\theta =\frac{e^{\theta}+ e^{-\theta}}{2}[/tex]

and

[tex]sinh\theta =\frac{e^{\theta}- e^{-\theta}}{2}[/tex]

Thus,

[tex]cosh^{2}\theta-sinh^{2}\theta[/tex] becomes

[tex](\frac{e^{\theta}+ e^{-\theta}}{2})^{2} -(\frac{e^{\theta}- e^{-\theta}}{2})^{2}[/tex]

[tex]\frac{(e^{\theta}+ e^{-\theta})^{2}}{2^{2}} -\frac{(e^{\theta}- e^{-\theta})^{2}}{2^{2}}[/tex]

[tex]\frac{(e^{\theta}+ e^{-\theta})(e^{\theta}+ e^{-\theta})}{4} -\frac{(e^{\theta}- e^{-\theta})(e^{\theta}- e^{-\theta})}{4}[/tex]

[tex]\frac{e^{2\theta}+ e^{0}+e^{0}+ e^{-2\theta}}{4} -\frac{(e^{2\theta}- e^{0}-e^{0}+e^{-2\theta})}{4}[/tex]

[tex]\frac{e^{2\theta}+ 1+1+ e^{-2\theta}}{4} -\frac{(e^{2\theta}- 1-1+e^{-2\theta})}{4}[/tex]

[tex]\frac{e^{2\theta}+2+ e^{-2\theta}}{4}-\frac{(e^{2\theta}- 2+e^{-2\theta})}{4}[/tex]

[tex]\frac{e^{2\theta}+2+ e^{-2\theta}-(e^{2\theta}- 2+e^{-2\theta})}{4}[/tex]

[tex]\frac{e^{2\theta}+2+ e^{-2\theta}-e^{2\theta}+2-e^{-2\theta}}{4}[/tex]

Collect like terms

[tex]\frac{e^{2\theta}-e^{2\theta}+2+2+ e^{-2\theta}-e^{-2\theta}}{4}[/tex]

= [tex]\frac{4}{4}[/tex]

= 1

Hence, By definitions of the hyperbolic functions, we have  proven that [tex]cosh^{2}\theta-sinh^{2}\theta = 1[/tex]

Learn more Proving identities here: https://brainly.com/question/2561079

#SPJ1

ACCESS MORE