Respuesta :

Answer:

843 m  (nearest metre)

Step-by-step explanation:

As the triangle is not a right triangle, we need to use the cosine rule to find the length of x.

Cosine rule

[tex]c^2=a^2+b^2-2ab \cos C[/tex]

where:

  • C is the angle
  • c is the side opposite the angle
  • a and b are the sides adjacent to the angle

From inspection of the diagram:

  • C = 83°
  • c = x
  • a = 760
  • b = 470

Substitute these values into the formula and solve for x:

[tex]\implies c^2=a^2+b^2-2ab \cos C[/tex]

[tex]\implies x^2=760^2+470^2-2(760)(470) \cos 82^{\circ}[/tex]

[tex]\implies x^2=798500-714400 \cos 83^{\circ}[/tex]

[tex]\implies x=\sqrt{798500-714400 \cos 83^{\circ}}[/tex]

[tex]\implies x=843.4669769...[/tex]

[tex]\implies x=843 \sf \:m\:\:(nearest\:metre)[/tex]

ACCESS MORE