Respuesta :

[tex]\\ \rm\Rrightarrow \sum^{60}_{n=1}3n[/tex]

It will form a arithmetic sequence as

[tex]\\ \rm\Rrightarrow 3(1)+3(2)+3(3)\dots 3(60)[/tex]

  • First term=a=3
  • Last term=3(60)=180
  • n=60

So

Summation

[tex]\\ \rm\Rrightarrow \dfrac{n}{2}(a+\ell)[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{60}{2}(3+180)[/tex]

[tex]\\ \rm\Rrightarrow 30(183)[/tex]

[tex]\\ \rm\Rrightarrow 5490[/tex]

Option D

Answer:

[tex]\mathsf {5,490}[/tex]

Step-by-step explanation:

[tex]\textsf {Given :}[/tex]

[tex]\lim_{1 \to \660} \sum3n[/tex]

[tex]\textsf {Finding the necessary :}[/tex]

[tex]\textsf {1. first term (a)}[/tex]

[tex]\implies \mathsf {a = 3(1) = 3}[/tex]

[tex]\textsf {2. final term}[/tex] [tex]\mathsf {(a_n)}[/tex]

[tex]\implies \mathsf {a_n = 3(60) = 180}[/tex]

[tex]\textsf {3. common difference (d)}[/tex]

[tex]\implies \mathsf {a_2 = 3(2) = 6}[/tex]

[tex]\implies \mathsf {d = a_2 - a_1 = 6 - 3 = 3}[/tex]

[tex]\textsf {Finding the sum of the series :}[/tex]

[tex]\implies \mathsf {S_n =\frac{n}{2}(a + a_n) }[/tex]

[tex]\implies \mathsf {S_6_0 = \frac{60}{2} (3 + 180)}[/tex]

[tex]\implies \mathsf {S_6_0 = 30 \times 183}[/tex]

[tex]\implies \mathsf {S_6_0 = 5,490}[/tex]

ACCESS MORE