Respuesta :

Answer:

B

Step-by-step explanation:

using the addition identity for sine

sin(A + B) = sinAcosB + cosAsinB

using the sine and cosine ratios in the right triangle

sinABC = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{4}{5}[/tex]

cosABC = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{3}{5}[/tex]

using the exact values

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , cos60° = [tex]\frac{1}{2}[/tex]

Then

sin(ABC + 60)

= sinABC cos60 + cosABC sin60

= ( [tex]\frac{4}{5}[/tex] × [tex]\frac{1}{2}[/tex] ) + ([tex]\frac{3}{5}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] )

= [tex]\frac{4}{10}[/tex] + [tex]\frac{3}{10}[/tex] [tex]\sqrt{3}[/tex]

= [tex]\frac{2}{5}[/tex] + [tex]\frac{3}{10}[/tex] [tex]\sqrt{3}[/tex]

sin<ABc

  • Perpendicular/Hypotenuse
  • 4/5

cos<ABC

  • Base/Hypotenuse
  • 3/5

Now

  • sin(<ABC+60)
  • sin<ABC ×cos60+cos<ABC×sin60
  • 4/5(1/2)+3/5(√3/2)
  • 2/5+3/10√3
ACCESS MORE