Answer:
[tex]\sf D. \quad P(A|B)=\dfrac{24}{25}[/tex]
Step-by-step explanation:
General equation for conditional probability
[tex]\sf P(A \cap B)=P(A)\:P(B|A)[/tex]
As we need to find P(A|B) we can rewrite the equation:
[tex]\implies \sf P(B \cap A)=P(B)\:P(A|B)[/tex]
Given:
[tex]\sf P(A \cap B)=\dfrac{4}{5}[/tex]
[tex]\sf P(B)=\dfrac{5}{6}[/tex]
Remember that [tex]\sf P(A \cap B)=P(B \cap A)[/tex]
Substitute the given values into the formula:
[tex]\implies \sf P(B \cap A)=P(B)\:P(A|B)[/tex]
[tex]\implies \sf \dfrac{4}{5}=\dfrac{5}{6}\:P(A|B)[/tex]
[tex]\implies \sf P(A|B)=\dfrac{4}{5} \div \dfrac{5}{6}[/tex]
[tex]\implies \sf P(A|B)=\dfrac{4}{5} \times \dfrac{6}{5}[/tex]
[tex]\implies \sf P(A|B)=\dfrac{24}{25}[/tex]