According to the general equation for conditional probability, if P(AB) =
4/5
and P(B) = 5/6, what is P(AIB)?
A.15/16
B.35/36
C.8/9
D.24/25

Respuesta :

Answer:

[tex]\sf D. \quad P(A|B)=\dfrac{24}{25}[/tex]

Step-by-step explanation:

General equation for conditional probability

[tex]\sf P(A \cap B)=P(A)\:P(B|A)[/tex]

As we need to find P(A|B) we can rewrite the equation:

[tex]\implies \sf P(B \cap A)=P(B)\:P(A|B)[/tex]

Given:

     [tex]\sf P(A \cap B)=\dfrac{4}{5}[/tex]

     [tex]\sf P(B)=\dfrac{5}{6}[/tex]

Remember that [tex]\sf P(A \cap B)=P(B \cap A)[/tex]

Substitute the given values into the formula:

[tex]\implies \sf P(B \cap A)=P(B)\:P(A|B)[/tex]

[tex]\implies \sf \dfrac{4}{5}=\dfrac{5}{6}\:P(A|B)[/tex]

[tex]\implies \sf P(A|B)=\dfrac{4}{5} \div \dfrac{5}{6}[/tex]

[tex]\implies \sf P(A|B)=\dfrac{4}{5} \times \dfrac{6}{5}[/tex]

[tex]\implies \sf P(A|B)=\dfrac{24}{25}[/tex]

ACCESS MORE