Which expression is equivalent to
4^sqrt 6 / 3^sqrt2
![Which expression is equivalent to 4sqrt 6 3sqrt2 class=](https://us-static.z-dn.net/files/d97/f8a95dfabc2ad7894f9a21f005e0b2ad.png)
Answer:
[tex]\dfrac{\sqrt[12]{55296} }{2}[/tex]
Step-by-step explanation:
Given expression:
[tex]\dfrac{\sqrt[4]{6}}{\sqrt[3]{2}}[/tex]
[tex]\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{\frac{1}{n}}:[/tex]
[tex]\implies \dfrac{\sqrt[4]{6}}{\sqrt[3]{2}}=\dfrac{6^{\frac{1}{4}}}{2^{\frac{1}{3}}}[/tex]
Multiply the numerator and denominator by [tex]2^{\frac{2}{3}}[/tex] :
[tex]\implies \dfrac{6^{\frac{1}{4}}}{2^{\frac{1}{3}}} \times \dfrac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}}[/tex]
[tex]\textsf{Apply exponent rule to the denominator} \quad a^b \cdot a^c=a^{b+c}:[/tex]
[tex]\implies \dfrac{6^{\frac{1}{4}}}{2^{\frac{1}{3}}} \times \dfrac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}}=\dfrac{6^{\frac{1}{4}} \cdot 2^{\frac{2}{3}}}{2^{\frac{1}{3}+\frac{2}{3}}}=\dfrac{6^{\frac{1}{4}} \cdot 2^{\frac{2}{3}}}{2}[/tex]
Rewrite 1/4 as 3/12 and 2/3 as 8/12 :
[tex]\implies \dfrac{6^{\frac{1}{4}} \cdot 2^{\frac{2}{3}}}{2}=\dfrac{6^{\frac{3}{12}} \cdot 2^{\frac{8}{12}}}{2}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^c \cdot b^c=(a \cdot b)^c:[/tex]
[tex]\implies \dfrac{6^{\frac{3}{12}} \cdot 2^{\frac{8}{12}}}{2}=\dfrac{(6^3 \cdot 2^{8})^\frac{1}{12}}{2}[/tex]
Simplify the operation in the parentheses:
[tex]\implies \dfrac{(6^3 \cdot 2^{8})^\frac{1}{12}}{2}=\dfrac{(216\cdot 256)^\frac{1}{12}}{2}=\dfrac{(55296)^\frac{1}{12}}{2}[/tex]
[tex]\textsf{Finally, apply exponent rule} \quad a^{\frac{1}{n}}=\sqrt[n]{a}:[/tex]
[tex]\implies \dfrac{(55296)^\frac{1}{12}}{2}=\dfrac{\sqrt[12]{55296} }{2}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{\sqrt[4]{6}}{\sqrt[3]{2}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{6^{\dfrac{1}{4}}}{2^{\dfrac{1}{3}}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{2^{\dfrac{1}{4}}3^{\dfrac{1}{4}}}{2^{\dfrac{1}{3}}}[/tex]
[tex]\\ \rm\Rrightarrow 2^{\dfrac{1}{4}-\dfrac{1}{3}}3^{\dfrac{1}{4}}[/tex]
[tex]\\ \rm\Rrightarrow 2^{\dfrac{-1}{12}}3^{\dfrac{1}{4}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{3^{\dfrac{1}{4}}}{2^{\dfrac{1}{12}}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{3^{\dfrac{3}{12}}}{2^{\dfrac{1}{12}}}[/tex]
[tex]\\ \rm\Rrightarrow \left(\dfrac{3^3}{2}\right)^{\dfrac{1}{12}}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt[12]{\dfrac{3^3}{2}}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt[12]{\dfrac{3^3\times 2^82^3}{22^82^3}}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt[12]{\dfrac{27(256)(8)}{2^12}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{\sqrt[12]{6912(8)}}{2}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{\sqrt[12]{55296}}{2}[/tex]