Respuesta :

If we evaluate at infinity, we have:

                        [tex]\bf{\displaystyle L = \lim_{x \to \infty}{\frac{\log(x^8 - 5)}{x^2}} = \frac{\infty}{\infty} }[/tex]

However, the infinity of the denominator has a higher order. Therefore, we can conclude that  [tex]\boldsymbol{L = 0.}[/tex]

However, proving that the limit is 0 without using L'Hopital or the "order" criterion is complicated. To do so, let us denote:

                           [tex]\boldsymbol{\displaystyle f(x) = \frac{\log(x^8 - 5)}{x^2} }[/tex]

To find the limit, we must look for two functions h(x) and g(x) such that h(x)≤ f(x)≤ g(x) and

                               [tex]\boldsymbol{\displaystyle \lim_{x \to \infty}{h(x)} = 0, \qquad \lim_{x \to \infty}{g(x)} = 0}[/tex]

If we find these functions, then we can conclude that [tex]\bf{\lim_{x \to \infty}{f(x)} = 0.}[/tex]

First, let's note that when x⁸ - 5 > 1, then log(x⁸ - 5) > 0 (and this is true when x is large). Likewise, we have that x² > 0 for x > 0. Therefore, we have:

                                   [tex]\boldsymbol{\displaystyle f(x) = \frac{\log(x^8 - 5)}{x^2} \geq 0}[/tex]

when x "is big enough". Thus, we have h(x) = 0 where it is clear that [tex]\bf{\lim_{x \to \infty}{h(x)} = 0.}[/tex]

To find the second function, let's first note that \log is an increasing function, so since x⁸ ≥ x⁸ - 5, then log(x⁸) ≥ log(x⁸ - 5). So we have to

                [tex]\boldsymbol{\displaystyle \frac{\log(x^8 - 5)}{x^2} \leq \frac{\log(x^8)}{x^2} }[/tex]

now, if we take y = e^y, then we can write

                  [tex]\boldsymbol{\displaystyle \frac{\log(x^8)}{x^2} = \frac{\log(e^{8y})}{e^{2y}} = \frac{8y}{e^{2y}}}[/tex]

A very important property about the exponential function is

                    [tex]\boldsymbol{\displaystyle e^x > \frac{x^n}{n!}}[/tex]

For any n [tex]\bf{n \in \mathbb{N}}[/tex] and x > 0. If we take n = 2, then we have

                    [tex]\boldsymbol{\displaystyle e^{2y} > \frac{(2y)^2}{2!} = \frac{4y^2}{2} = 2y^2}[/tex]

From this it follows that

                     [tex]\boldsymbol{\displaystyle \frac{1}{e^{2y}} < \frac{1}{2y^2} }[/tex]

Therefore, we have to

                    [tex]\boldsymbol{\displaystyle \frac{\log(x^8 - 5)}{x^2} \leq \frac{\log(x^8)}{x^2} < \frac{8y}{2y^2} = \frac{4}{y} = \frac{4}{\log x} }[/tex]

yes, [tex]\bf{g(x) = 4/\log x}[/tex] where [tex]\bf{\lim_{x \to \infty}{g(x)} = 0}[/tex]. Also, [tex]\bf{h(x) \leq f(x) < g(x)}[/tex]. Therefore, [tex]\bf{\lim_{x \to \infty}{f(x)} = 0}[/tex].

[tex]\red{\boxed{\green{\boxed{\boldsymbol{\sf{\purple{Pisces04}}}}}}}[/tex]