The region [tex]D[/tex] is essentially parameterized in three dimensions by
[tex]\Phi(u,v) = (u^2, u+v, 0)[/tex]
with [tex]1\le u\le8[/tex] and [tex]0\le v\le6[/tex].
The normal vector to [tex]D[/tex] is
[tex]\vec n = \dfrac{\partial\Phi}{\partial u} \times \dfrac{\partial\Phi}{\partial v} = (0,0,2u)[/tex]
with norm [tex]\|\vec n\| = 2u[/tex].
Then the surface integral is
[tex]\displaystyle \iint_D y \, dA = 2 \int_0^6 \int_1^8 (u+v)u \, du \, dv \\\\ = 2 \int_0^6 \left(\frac{1022}3 + 63 v\right) \, dv = \boxed{3178}[/tex]