Respuesta :

Using the Law of Cosines,

[tex]c^{2}=2^{2}+4^{2}-2(2)(4)(\sin 30^{\circ})\\\\c^{2}=12\\\\c=2\sqrt{3}[/tex]

Using the Law of Sines,

[tex]\frac{\sin A}{a}=\frac{\sin C}{c}\\\\\frac{\sin A}{2}=\frac{\sin 30^{\circ}}{2\sqrt{3}}\\\\\frac{\sin A}{2}=\frac{1}{4\sqrt{3}}\\\\\sin A=\frac{1}{2\sqrt{3}}\\\\A=\boxed{\sin^{-1} \left(\frac{1}{2\sqrt{3}} \right)}[/tex]

So, as angles in a triangle add to 180 degrees,

[tex]B=180^{\circ}-30^{\circ}-\sin^{-1} \left(\frac{1}{2\sqrt{3}} \right)\\\\B=\boxed{150^{\circ}-\sin^{-1} \left(\frac{1}{2\sqrt{3}} \right)}[/tex]

Ver imagen Medunno13