Respuesta :
Answer:
x = ± 6
Step-by-step explanation:
Hello!
Solve
- [tex]5x^2 = 180[/tex]
- [tex]x^2 = 180/5[/tex]
- [tex]x^2 = 36[/tex]
- [tex]\sqrt{x^2} = \sqrt{36}[/tex]
- [tex]x = \pm 6[/tex]
The value of x is 6 or -6.
Hi...
Given:
[tex]\texttt{5x}[/tex]² [tex]\texttt{= 180}[/tex]
Solution:
[tex]\texttt{5x}[/tex]² [tex]\texttt{= 180}[/tex]
Explanation:
Divide both sides by 5
[tex]\hookrightarrow{\mathtt{\frac{5x^2}{5}} = {\mathtt{\frac{180}{5}}[/tex]
Simplify:
[tex]\hookrightarrow{\mathtt{x^2 = 36}[/tex]
[tex]\hookrightarrow{\mathtt{For \: x^2 \: = f(a) \: the \: solutions \: are \: x = \sqrt{f(a)}}[/tex] , [tex]\mathtt{- \sqrt{f(a)}}[/tex]
[tex]\hookrightarrow{\mathtt{x = \sqrt{36}}[/tex] , [tex]\mathtt{x = -\sqrt{36}}[/tex]
Factor the number: 36 = 6²
[tex]\mathtt{= \sqrt{6^2}}[/tex]
Apply radical rule: [tex]\mathtt{\sqrt[n]{a^n} \: = a}[/tex]
[tex]\mathtt{\sqrt{6^2} = 6} \\\mathtt{= 6}[/tex]
- [tex]\sqrt{36} = -6[/tex]
[tex]\boxed{\fbox{\bf{x = 6 , x = -6}}}[/tex]
Hope It Helps You...