Respuesta :

Answer:

x = ± 6

Step-by-step explanation:

Hello!

Solve

  • [tex]5x^2 = 180[/tex]
  • [tex]x^2 = 180/5[/tex]
  • [tex]x^2 = 36[/tex]
  • [tex]\sqrt{x^2} = \sqrt{36}[/tex]
  • [tex]x = \pm 6[/tex]

The value of x is 6 or -6.

Fearqi

Hi...

Given:

[tex]\texttt{5x}[/tex]² [tex]\texttt{= 180}[/tex]

Solution:

[tex]\texttt{5x}[/tex]² [tex]\texttt{= 180}[/tex]

Explanation:

Divide both sides by 5

[tex]\hookrightarrow{\mathtt{\frac{5x^2}{5}} = {\mathtt{\frac{180}{5}}[/tex]

Simplify:

[tex]\hookrightarrow{\mathtt{x^2 = 36}[/tex]

[tex]\hookrightarrow{\mathtt{For \: x^2 \: = f(a) \: the \: solutions \: are \: x = \sqrt{f(a)}}[/tex] , [tex]\mathtt{- \sqrt{f(a)}}[/tex]

[tex]\hookrightarrow{\mathtt{x = \sqrt{36}}[/tex] , [tex]\mathtt{x = -\sqrt{36}}[/tex]

Factor the number: 36 = 6²

[tex]\mathtt{= \sqrt{6^2}}[/tex]

Apply radical rule: [tex]\mathtt{\sqrt[n]{a^n} \: = a}[/tex]

[tex]\mathtt{\sqrt{6^2} = 6} \\\mathtt{= 6}[/tex]

- [tex]\sqrt{36} = -6[/tex]

[tex]\boxed{\fbox{\bf{x = 6 , x = -6}}}[/tex]

Hope It Helps You...

ACCESS MORE