Find the measure of the indicated angle to the nearest degree.
7
9
12
?
49⁰
O53⁰
41°
37⁰
![Find the measure of the indicated angle to the nearest degree 7 9 12 49 O53 41 37 class=](https://us-static.z-dn.net/files/dd4/348de7077945b44870cdf83843ccce5b.png)
Answer:
[tex]41^{\circ}[/tex]
Step-by-step explanation:
[tex]~~~~~~\cos \theta = \dfrac{\text{Base}}{\text{Hypotenuse}}\\\\\\\implies \cos \theta = \dfrac{9}{12}\\\\\\\implies \theta = \cos^{-1} \left( \dfrac 9{12} \right)\\\\\\\implies \theta \approx 41^{\circ}[/tex]
Answer:
41°
Step-by-step explanation:
Since the adjacent side and the hypotenuse are given, let's take the cosine ratio of the missing angle.
cos θ = adjacent side / hypotenuse
===========================================================
Given :
⇒ Adjacent side = 9
⇒ Hypotenuse = 12
===========================================================
Solving :
⇒ cos θ = 9/12
⇒ cos θ = 0.75
⇒ θ = cos⁻¹ (0.75)
⇒ θ = 41.4096221....
⇒ θ = 41° (to the nearest degree)