Solve for x
(2^2/x) (2^4/x) = 2^12
![Solve for x 22x 24x 212 class=](https://us-static.z-dn.net/files/d51/d225f9f8b17421bf1a3fda0eaecc3c26.png)
[tex] \textsf{\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Let's solve ~
[tex]\qquad \sf \dashrightarrow \:(2 {}^{ \frac{2}{x} } ) \sdot(2 {}^{ \frac{4}{x} } ) = 2 {}^{12} [/tex]
[tex]\qquad \sf \dashrightarrow \:(2 {}^{ \frac{2}{x} + \frac{4}{x} } ) = 2 {}^{12} [/tex]
[tex]\qquad \sf \dashrightarrow \:(2 {}^{ \frac{6}{x} } ) = 2 {}^{12} [/tex]
Now, since the base on both sides are equal, therefore their exponents are equal as well ~
[tex]\qquad \sf \dashrightarrow \: \dfrac{6}{x} = 12[/tex]
[tex]\qquad \sf \dashrightarrow \:x = \dfrac{6}{12} [/tex]
[tex]\qquad \sf \dashrightarrow \:x = \dfrac{1}{2} [/tex]
or
[tex]\qquad \sf \dashrightarrow \:x = 0.5[/tex]
Hope you got the required Answer ~