Answer:
See below for proof of identity.
Step-by-step explanation:
Since both terms of [tex]\sin^3\theta+\cos^3\theta[/tex] are perfect cubes, we can use the formula [tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex] where [tex]a=\sin\theta[/tex] and [tex]b=\cos\theta[/tex]:
[tex]\displaystyle \frac{\sin^3\theta+\cos^3\theta}{\sin\theta+\cos\theta}\\\\\frac{(\sin\theta+\cos\theta)(\sin^2\theta-\sin\theta\cos\theta+\cos^2\theta)}{\sin\theta+\cos\theta}\\ \\\frac{(\sin\theta+\cos\theta)(1-\sin\theta\cos\theta)}{\sin\theta+\cos\theta}\\\\1-\sin\theta\cos\theta[/tex]
Thus, the identity is proven.