DUE BEFORE 11 PM
USING THE LAW OF SINES SOLVE

Answer:
I round it to the whole number and degree.
<A = 33°
<C = 97°
C = 63
Step-by-step explanation:
Law of Sine: [tex]\frac{sinA}{A} =\frac{sinB}{B}= \frac{sin C}{C}[/tex]
[tex]\frac{sin(A)}{A} =\frac{sin(B)}{B}\\\frac{sin(A)}{104} =\frac{sin(50)}{49} \\\\sin(A)=\frac{104*sin(50)}{49}[/tex]
A = sin^-1 (104*sin(50)/49)
A = 33°
180° - <B - <A = <C
180° - 50° - 33° = 97°
[tex]\frac{sin(B)}{B}=\frac{sin(C)}{C} \\\\C =\frac{Bsin(C)}{sin(B)}\\\\C=\frac{104sin(97)}{sin(50)}\\\\C = 63[/tex]