Computing Indefinite Integrals:
- Evaluate [tex]\displaystyle \int{{4{x^6} - 2{x^3} + 7x - 4\,dx}}[/tex]

- Do not copy and paste --> Results in immediate reports (Point-seekers)
- Do not spam
- Do not add any unnecessary information
- Add an explanation
- Please help, thank you

Respuesta :

Space

Answer:

[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx = \boxed{ \frac{4x^7}{7} - \frac{x^4}{2} + \frac{7x^2}{2} - 4x + C }[/tex]

General Formulas and Concepts:
Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify given integral.

[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx[/tex]

Step 2: Integrate

We can find the indefinite integral using basic integration techniques listed under "Calculus":

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    [tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \leftarrow \\\end{aligned}[/tex]
  2. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    [tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \leftarrow \\\end{aligned}[/tex]
  3. [Integrals] Apply Integration Rule [Reverse Power Rule]:
    [tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \\& = 4 \bigg( \frac{x^7}{7} \bigg) - 2 \bigg( \frac{x^4}{4} \bigg) + 7 \bigg( \frac{x^2}{2} \bigg) - 4x + C \leftarrow \\\end{aligned}[/tex]
  4. Simplify:
    [tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \\& = 4 \bigg( \frac{x^7}{7} \bigg) - 2 \bigg( \frac{x^4}{4} \bigg) + 7 \bigg( \frac{x^2}{2} \bigg) - 4x + C \\& = \boxed{ \frac{4x^7}{7} - \frac{x^4}{2} + \frac{7x^2}{2} - 4x + C } \leftarrow \\\end{aligned}[/tex]

∴ we have found the indefinite integral.

___

Learn more about integration: https://brainly.com/question/27795758

Learn more about Calculus: https://brainly.com/question/27780220

___

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Answer:

[tex]\dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}[/tex]

Step-by-step explanation:

Integration is the "opposite" of differentiation.

Fundamental Theorem of Calculus

[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration (C).

[tex]\boxed{\begin{minipage}{5 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\(where $n$ is any constant value)\end{minipage}}[/tex]

Just add an x to the constant.

[tex]\boxed{\begin{minipage}{4 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]

Increase the power by 1, then divide by the new power.

[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}[/tex]

If the terms are multiplied by constants, take them outside the integral.

Given indefinite integral:

[tex]\displaystyle \int (4x^6-2x^3+7x-4)\:dx[/tex]

Integrate each term separately and take the constants outside the integrals:

[tex]\implies \displaystyle 4 \int x^6\:\text{d}x - 2 \int x^3 \:\text{d}x + 7 \int x \:\text{d}x - \int 4 \:\text{d}x[/tex]

Integrate, using the rules given above:

[tex]\implies 4 \cdot \dfrac{x^7}{7}-2 \cdot \dfrac{x^4}{4}+7 \cdot \dfrac{x^2}{2}-4x+\text{C}[/tex]

Simplify:

[tex]\implies \dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}[/tex]

As one calculation:

[tex]\begin{aligned}\displaystyle \int (4x^6-2x^3+7x-4)\:dx & = \displaystyle 4 \int x^6\:\text{d}x - 2 \int x^3 \:\text{d}x + 7 \int x \:\text{d}x - \int 4 \:\text{d}x\\\\& = 4 \cdot \dfrac{x^7}{7}-2 \cdot \dfrac{x^4}{4}+7 \cdot \dfrac{x^2}{2}-4x+\text{C}\\\\& = \dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}\end{aligned}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico