Respuesta :
Answer:
[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx = \boxed{ \frac{4x^7}{7} - \frac{x^4}{2} + \frac{7x^2}{2} - 4x + C }[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify given integral.
[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx[/tex]
Step 2: Integrate
We can find the indefinite integral using basic integration techniques listed under "Calculus":
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
[tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \leftarrow \\\end{aligned}[/tex] - [Integrals] Rewrite [Integration Property - Multiplied Constant]:
[tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \leftarrow \\\end{aligned}[/tex] - [Integrals] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \\& = 4 \bigg( \frac{x^7}{7} \bigg) - 2 \bigg( \frac{x^4}{4} \bigg) + 7 \bigg( \frac{x^2}{2} \bigg) - 4x + C \leftarrow \\\end{aligned}[/tex] - Simplify:
[tex]\displaystyle \begin{aligned}\int {4x^6 - 2x^3 + 7x - 4} \, dx & = \int {4x^6} \, dx - \int {2x^3} \, dx + \int {7x} \, dx - \int {4} \, dx \\& = 4 \int {x^6} \, dx - 2\int {x^3} \, dx + 7 \int {x} \, dx - 4 \int {} \, dx \\& = 4 \bigg( \frac{x^7}{7} \bigg) - 2 \bigg( \frac{x^4}{4} \bigg) + 7 \bigg( \frac{x^2}{2} \bigg) - 4x + C \\& = \boxed{ \frac{4x^7}{7} - \frac{x^4}{2} + \frac{7x^2}{2} - 4x + C } \leftarrow \\\end{aligned}[/tex]
∴ we have found the indefinite integral.
___
Learn more about integration: https://brainly.com/question/27795758
Learn more about Calculus: https://brainly.com/question/27780220
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer:
[tex]\dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}[/tex]
Step-by-step explanation:
Integration is the "opposite" of differentiation.
Fundamental Theorem of Calculus
[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration (C).
[tex]\boxed{\begin{minipage}{5 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\(where $n$ is any constant value)\end{minipage}}[/tex]
Just add an x to the constant.
[tex]\boxed{\begin{minipage}{4 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]
Increase the power by 1, then divide by the new power.
[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}[/tex]
If the terms are multiplied by constants, take them outside the integral.
Given indefinite integral:
[tex]\displaystyle \int (4x^6-2x^3+7x-4)\:dx[/tex]
Integrate each term separately and take the constants outside the integrals:
[tex]\implies \displaystyle 4 \int x^6\:\text{d}x - 2 \int x^3 \:\text{d}x + 7 \int x \:\text{d}x - \int 4 \:\text{d}x[/tex]
Integrate, using the rules given above:
[tex]\implies 4 \cdot \dfrac{x^7}{7}-2 \cdot \dfrac{x^4}{4}+7 \cdot \dfrac{x^2}{2}-4x+\text{C}[/tex]
Simplify:
[tex]\implies \dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}[/tex]
As one calculation:
[tex]\begin{aligned}\displaystyle \int (4x^6-2x^3+7x-4)\:dx & = \displaystyle 4 \int x^6\:\text{d}x - 2 \int x^3 \:\text{d}x + 7 \int x \:\text{d}x - \int 4 \:\text{d}x\\\\& = 4 \cdot \dfrac{x^7}{7}-2 \cdot \dfrac{x^4}{4}+7 \cdot \dfrac{x^2}{2}-4x+\text{C}\\\\& = \dfrac{4}{7}x^7-\dfrac{1}{2}x^4+\dfrac{7}{2}x^2-4x+\text{C}\end{aligned}[/tex]