Using the properties of Integer exponents, match each expression with its equivalent expression.

The -5⁻³ matches with -1/125, (-5⁻³)⁻¹ matches with -125, and (-5⁻³)⁰ matches with 1.
In mathematics, integer exponents are exponents that should be integers. It may be a positive or negative number. In this situation, the positive integer exponents determine the number of times the base number should be multiplied by itself.
5⁻³ = 1/5³ = 1/125
-5⁻³ = -1/5³ = -1/125
(-5⁻³)⁻¹ = (-1/5³)⁻¹ = (-1/125)⁻¹ = -125
(-5⁻³)⁰ = 1 [tex]\rm (a^0 = 1)[/tex]
Thus, the -5⁻³ matches with -1/125, (-5⁻³)⁻¹ matches with -125, and (-5⁻³)⁰ matches with 1.
Learn more about the integer exponent here:
brainly.com/question/4533599
#SPJ1
Answer:
[tex]\sf{1)\ 5^{-3}={\dfrac{1}{5^3}={\dfrac{1}{125}[/tex]
[tex]\sf{2)\ -5^{-3}={\dfrac{1}{-5^3}=-{\dfrac{1}{125}[/tex]
[tex]\sf{3)\ \left(-5^{-3}\right)^{-1}=\left(-5^{-3\times-1}\right)=-5^{3}=-125}[/tex]
[tex]\sf{4)\ \left(-5^{-3}\right)^{0}=1[/tex]
Step-by-step explanation:
Exponent Property Rules:
⟹ Zero Exponent Property - ex: x⁰ = 1
An integer (excluding 0) with an exponent of zero equals one.
⟹ Negative Exponent Property - ex: x⁻ⁿ = [tex]{\dfrac{1}{x^n}[/tex]
Any number raised to a negative power is equivalent to the reciprocal of the number's positive exponent.
⟹ Power of Product Property - ex: (xy)ⁿ = xⁿ × yⁿ
To find the power of a product, multiply the power of each factor.
[tex]\sf{1)\ 5^{-3}={\dfrac{1}{5^3}={\dfrac{1}{125}[/tex]
[tex]\sf{2)\ -5^{-3}={\dfrac{1}{-5^3}=-{\dfrac{1}{125}[/tex]
[tex]\sf{3)\ \left(-5^{-3}\right)^{-1}=\left(-5^{-3\times-1}\right)=-5^{3}=-125}[/tex]
[tex]\sf{4)\ \left(-5^{-3}\right)^{0}=1[/tex]
Learn more here:
brainly.com/question/13429877
brainly.com/question/21222719