Answer:
[tex]\displaystyle z=\frac{5}{2}\biggr(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}\biggr)[/tex]
Step-by-step explanation:
A complex number in polar form is [tex]z=r(\cos\theta+i\sin\theta)[/tex] where [tex]r=\sqrt{x^2+y^2}[/tex] and [tex]\displaystyle \theta=\tan^{-1}\biggr(\frac{y}{x}\biggr)[/tex], thus:
[tex]r=\sqrt{x^2+y^2}=\sqrt{(\frac{5\sqrt{3}}{4})^2+(-\frac{5}{4})^2}=\sqrt{\frac{75}{16}+\frac{25}{16}}=\sqrt{\frac{100}{16}}=\frac{10}{4}=\frac{5}{2}[/tex]
[tex]\displaystyle \theta=\tan^{-1}\biggr(\frac{y}{x}\biggr)=\tan^{-1}\biggr(\frac{-\frac{5}{4}}{\frac{5\sqrt{3}}{4}}\biggr)=\tan^{-1}\biggr(-\frac{\sqrt{3}}{3}\biggr)=\frac{11\pi}{6}[/tex]
Thus, the complex number in polar form is [tex]\displaystyle z=\frac{5}{2}\biggr(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}\biggr)[/tex]