[tex] \bold{\underline{\underline{\underbrace{Answer}}}} [/tex]
x = a and y = b
Step-by-step explanation:
The value of x and y
⠀
ax + by = a² + b² (equation 1)
bx - ay = 0 (equation 2)
⠀
{Taking equation 2}
[tex] \sf bx - ay = 0 [/tex]
{Taking ay on RHS}
[tex] \sf bx = ay[/tex]
{Dividing both sides by a}
[tex] \sf \frac{bx}{a} = y(equation \: 3)[/tex]
{Now substituting the equation 3 in equation 1}
[tex] \sf ax + b( \frac{bx}{a} ) = {a}^{2} + {b}^{2} \\ \\ \sf ax + \frac{ {b}^{2} x}{a} = {a}^{2} + {b}^{2} [/tex]
{Taking LCM on LHS}
[tex] \sf \frac{ {a}^{2}x + {b}^{2} x }{a} = {a}^{2} + {b}^{2} \\ \\ \sf \frac{x( {a}^{2} + {b}^{2}) }{a} = ( {a}^{2} + {b}^{2} )[/tex]
{Dividing by (a² + b²) both sides}
[tex] \sf \frac{x}{a} = 1 \\ \\ \green{\boxed {\tt{x = a} } }[/tex]
{Now substituting the value of x in equation 3}
[tex] \sf \frac{ba}{a} = y \\ \\ \green {\boxed{ \tt{y = b}} }[/tex]