Respuesta :

[tex] \bold{\underline{\underline{\underbrace{Answer}}}} [/tex]

x = a and y = b

Step-by-step explanation:

  • To find

The value of x and y

  • Given

ax + by = a² + b² (equation 1)

bx - ay = 0 (equation 2)

  • Solution

{Taking equation 2}

[tex] \sf bx - ay = 0 [/tex]

{Taking ay on RHS}

[tex] \sf bx = ay[/tex]

{Dividing both sides by a}

[tex] \sf \frac{bx}{a} = y(equation \: 3)[/tex]

{Now substituting the equation 3 in equation 1}

[tex] \sf ax + b( \frac{bx}{a} ) = {a}^{2} + {b}^{2} \\ \\ \sf ax + \frac{ {b}^{2} x}{a} = {a}^{2} + {b}^{2} [/tex]

{Taking LCM on LHS}

[tex] \sf \frac{ {a}^{2}x + {b}^{2} x }{a} = {a}^{2} + {b}^{2} \\ \\ \sf \frac{x( {a}^{2} + {b}^{2}) }{a} = ( {a}^{2} + {b}^{2} )[/tex]

{Dividing by (a² + b²) both sides}

[tex] \sf \frac{x}{a} = 1 \\ \\ \green{\boxed {\tt{x = a} } }[/tex]

{Now substituting the value of x in equation 3}

[tex] \sf \frac{ba}{a} = y \\ \\ \green {\boxed{ \tt{y = b}} }[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico