3B What is the value of account after 10 years,
if interest is paid at 3.7%, if no other deposits
or withdrawals are made?
Initial deposit $6500, then compounded annually

Respuesta :

Answer:

$9,347.62

Step-by-step explanation:

Compound Interest Formula

[tex]\large \text{$ \sf A=P(1+\frac{r}{n})^{nt} $}[/tex]

where:

  • A = final amount
  • P = principal amount
  • r = interest rate (in decimal form)
  • n = number of times interest applied per time period
  • t = number of time periods elapsed

Given:

  • P = $6,500
  • r = 3.7% = 0.037
  • n = 1
  • t = 10 years

Substituting the given values into the formula and solving for A:

[tex]\implies \sf A=6500\left(1+\frac{0.037}{1}\right)^{10 \times 1}[/tex]

[tex]\implies \sf A=6500\left(1.037\right)^{10}[/tex]

[tex]\implies \sf A=9347.617232[/tex]

Therefore, the value of account after 10 years is $9,347.62

Let's see

[tex]\\ \rm\Rrightarrow A=P(1+r)^t[/tex]

  • P=6500
  • r=3.7%
  • t=10years

So

A:-

[tex]\\ \rm\Rrightarrow 6500(1+0.037)^{10}[/tex]

[tex]\\ \rm\Rrightarrow 6500(1.037)^{10}[/tex]

[tex]\\ \rm\Rrightarrow \$ 9347.6[/tex]

ACCESS MORE