Respuesta :

The equivalent expression of [tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex] is [tex]3\frac 12\log(\frac 32 x)[/tex]

How to determine the equivalent expression?

The logarithmic expression is given as:

[tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex]

Apply the power rule of logarithm

[tex]\log(9) + \log(x^\frac 12) + \log(x^3) - \log(6)[/tex]

Apply the product rule of logarithm

[tex]\log(9 * x^\frac 12 * x^3) - \log(6)[/tex]

Evaluate the product

[tex]\log(9 * x^{3\frac 12}) - \log(6)[/tex]

Apply the quotient rule of logarithm

[tex]\log(9 * x^{3\frac 12} \div 6)[/tex]

Evaluate the quotient

[tex]\log(\frac 32 x^{3\frac 12})[/tex]

Rewrite as:

[tex]3\frac 12\log(\frac 32 x)[/tex]

Hence, the equivalent expression of [tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex] is [tex]3\frac 12\log(\frac 32 x)[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832

#SPJ4