The equivalent expression of [tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex] is [tex]3\frac 12\log(\frac 32 x)[/tex]
The logarithmic expression is given as:
[tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex]
Apply the power rule of logarithm
[tex]\log(9) + \log(x^\frac 12) + \log(x^3) - \log(6)[/tex]
Apply the product rule of logarithm
[tex]\log(9 * x^\frac 12 * x^3) - \log(6)[/tex]
Evaluate the product
[tex]\log(9 * x^{3\frac 12}) - \log(6)[/tex]
Apply the quotient rule of logarithm
[tex]\log(9 * x^{3\frac 12} \div 6)[/tex]
Evaluate the quotient
[tex]\log(\frac 32 x^{3\frac 12})[/tex]
Rewrite as:
[tex]3\frac 12\log(\frac 32 x)[/tex]
Hence, the equivalent expression of [tex]\log(9) + \frac 12 \log(x) + \log(x^3) - \log(6)[/tex] is [tex]3\frac 12\log(\frac 32 x)[/tex]
Read more about equivalent expression at:
https://brainly.com/question/2972832
#SPJ4